

# Installation, Operation, and Maintenance

Water Source Heat Pump Axiom™ Variable Speed—VSH/VSV 24–60 MBtuh, 60 Hz





| VSHE024 | VSHE042 | VSVE024 | VSVE042 |
|---------|---------|---------|---------|
| VSHE033 | VSHE050 | VSVE033 | VSVE050 |
|         | VSHE060 |         | VSVE060 |

#### A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.



## Warnings, Cautions and Notices

Warnings, Cautions and Notices. Note that warnings, cautions and notices appear at appropriate intervals throughout this manual. Warnings are provide to alert installing contractors to potential hazards that could result in death or personal injury. Cautions are designed to alert personnel to hazardous situations that could result in personal injury, while notices indicate a situation that could result in equipment or property-damage-only accidents.

Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

Read this manual thoroughly before operating or servicing this unit.

**ATTENTION**: Warnings, Cautions and Notices appear at appropriate sections throughout this literature. Read these carefully:

#### **AWARNING**

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

#### **ACAUTION**

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.

#### **NOTICE:**

Indicates a situation that could result in equipment or property-damage only

# Important Environmental Concerns!

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs such as HCFCs and HFCs.

#### **Responsible Refrigerant Practices!**

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified. The Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that

must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.

#### **A** WARNING

# Proper Field Wiring and Grounding Required!

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state electrical codes. Failure to follow code could result in death or serious injury.

#### **AWARNING**

# Personal Protective Equipment (PPE) Required!

Installing/servicing this unit could result in exposure to electrical, mechanical and chemical hazards.

- Before installing/servicing this unit, technicians MUST put on all Personal Protective Equipment (PPE) recommended for the work being undertaken. ALWAYS refer to appropriate MSDS sheets and OSHA quidelines for proper PPE.
- When working with or around hazardous chemicals, ALWAYS refer to the appropriate MSDS sheets and OSHA guidelines for information on allowable personal exposure levels, proper respiratory protection and handling recommendations.
- If there is a risk of arc or flash, technicians MUST put on all Personal Protective Equipment (PPE) in accordance with NFPA 70E or other country-specific requirements for arc flash protection, PRIOR to servicing the unit.

Failure to follow recommendations could result in death or serious injury.

#### **Revision Summary**

WSHP-SVX13B-EN (10 Feb 2013)

Added 5Ton dimensional data

WSHP-SVX13B-EN (November 2012)

- · Added horizontal models to product family
- Added 5Ton horizontal and vertical models to product family



# **Table of Contents**

| Table of Contents                           | Sequence of Operat    |
|---------------------------------------------|-----------------------|
| Model Number Description - VSH/VSV 4        | Random Start Tim      |
| General Information 5                       | Maintenance Time      |
| Unit Inspection 5                           | Setpoint Arbitration  |
| Jobsite Inspection 5                        | Sensor Arbitration    |
| Jobsite Storage 5                           | Occupancy Deterr      |
| Model Number Description 5                  | Supply fan mode       |
| Unit Description 5                          | Unit Mode Arbitra     |
| Unit Nameplate 5                            | Isolation Valve Op    |
| Compressor Nameplate 6                      | Isolation Valve       |
| Air-to- Refrigerant Coil 6                  | Isolation Valve       |
| Water-to-Refrigerant Coil 6                 | Reversing Valve       |
| Controls 6                                  | Cooling and He        |
| System Input Devices and Functions 6        | Unoccupied Co         |
| Pump Module (field installed accessory) . 6 | 39                    |
| Unit Dimensions                             | Enhanced Dehu         |
| Unit Fan Performance 20                     | Demand Limit (        |
| MERV Filter                                 | Pre-Start Checklist . |
| General Data                                | Start-Up              |
| Installation 28                             | Operating Pressur     |
| General Installation Checks 28              | Water Pressure D      |
| Supply-Air Ductwork                         | Water Volume .        |
| Return-Air Ductwork 29                      | Maintenance           |
| Return Air Ducted Panel 29                  | Preventive Mair       |
| Ducted Filter Rack 29                       | Condensate Tra        |
| Sound Attenuation Pad                       | Troubleshooting       |
| Supply/Return Pipe Connections 30           | General Unit Trou     |
| Cleaning and Flushing the Water Loop . 30   | Compressor Drive      |
| Field Installed Power Wiring 31             | Control Wiring        |
| Main Unit Power Wiring 31                   |                       |
| Control Power Transformer 31                |                       |
| Sensor Location                             |                       |
| Electrical Data                             |                       |
| Variable-Speed WSHP UC400 Controller 34     |                       |
| I/O Definitions                             |                       |
| UC400 Setpoints and Setup Parameters . 35   |                       |

| Sequence of Operation                       |
|---------------------------------------------|
| Random Start Timer36                        |
| Maintenance Timer                           |
| Setpoint Arbitration                        |
| Sensor Arbitration                          |
| Occupancy Determination36                   |
| Supply fan mode operation37                 |
| Unit Mode Arbitration                       |
| Isolation Valve Operation38                 |
| Isolation Valve "ON" Control38              |
| Isolation Valve "OFF" Control39             |
| Reversing Valve Operation39                 |
| Cooling and Heating Operation39             |
| Unoccupied Cooling and Heating Operation 39 |
| Enhanced Dehumidification 39                |
| Demand Limit Operation39                    |
| Pre-Start Checklist40                       |
| Start-Up41                                  |
| Operating Pressures41                       |
| Water Pressure Drop45                       |
| Water Volume                                |
| Maintenance46                               |
| Preventive Maintenance46                    |
| Condensate Trap46                           |
| Troubleshooting48                           |
| General Unit Troubleshooting48              |
| Compressor Drive Troubleshooting49          |
| Control Wiring50                            |
| -                                           |



# **Model Number Description - VSH/VSV**

| V | S | Н | E | 0 | 4 | 2 | 3 | 2 | *  | *  |   |
|---|---|---|---|---|---|---|---|---|----|----|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | _ |

#### **Digits 1-3 - Unit Configuration**

VSH Variable Speed Horizontal VSV Variable Speed Vertical

#### **Digit 4 - Development Sequence**

E R-410A Refrigerant

#### **Digits 5-7 - Nominal Capacity**

024 = 24 MBTUH

033 = 33 MBTUH

042 = 42 MBTUH

050 = 50 MBTUH

060 = 60 MBTUH

#### Digit 8 - Voltage (Volts/Hz/Phase)

1 = 208/60/1

2 = 230/60/1

3 = 460/60/3

#### **Digit 9 - Heat Exchanger**

1 Copper Water Coil

2 Cupro-Nickel Water Coil

# Digit 10-11 - Current Design Sequence

#### Digit 12 - Control Type

F UC400

#### **Digit 13 - Freeze Protection**

A = 20°F degree (low temp/geothermal)

B = 35°F degree

#### **Digit 14 - Sales Order Special**

0 = None

S = Sales Order Special

#### Digit 15 - Supply Air Arrangement

B = Back Supply Air

L = Left Supply Air

R = Right Supply Air

T =Top Supply Air

# Digit 16 - Return Air Arrangement

L = Left Return Air

R = Right Return Air

#### Digit 17 - Open

0= None

#### Digit 18 - Filter Type

1 = 1 inchThrowaway Filter

2 = 2 inchThrowaway Filter

4 = 2 inch MERV 8

5 = 2 inch MERV 13



### **General Information**

#### A WARNING

#### Fiberglass Wool!

Product contains fiberglass wool. Disturbing the insulation in this product during installation, maintenance or repair will expose you to airborne particles of glass wool fibers and ceramic fibers known to the state of California to cause cancer through inhalation. Glass wool fibers may also cause respiratory, skin or eye irritation.

#### **Unit Inspection**

- · Unpack all components of the kit.
- Check carefully for any shipping damage. If any damage is found it must be reported immediately and a claim made against the transportation company.
- Visually inspect the components for shipping damage as soon as possible after delivery, before it is stored.
   Concealed damage must be reported within 15 days.
- If concealed damage is discovered, stop unpacking the shipment.
- Do not remove damaged material from the receiving location. Take photos of the damage, if possible. The owner must provide reasonable evidence that the damage did not occur after delivery.
- Notify the carrier's terminal of damage immediately by phone and by mail. Request an immediate joint inspection of the damage by the carrier and the consignee.
- Do not attempt to repair any damaged parts until the parts are inspected by the carrier's representative.

#### **Jobsite Inspection**

# Always perform the following checks before accepting a unit:

- Verify that the nameplate data matches the data on the sales order and bill of lading (including electrical data).
- Verify that the power supply complies with the unit nameplate specifications.
- Visually inspect the exterior of the unit, for signs of shipping damage. Do not sign the bill of lading accepting the unit(s) until inspection has been completed. Check for damage promptly after the unit(s) are unloaded. Once the bill of lading is signed at the jobsite, the unit(s) are now the property of the SOLDTO party and future freight claims MAY NOT be accepted by the freight company.

#### **Jobsite Storage**

#### WARNING

#### Microbial Growth!

Wet interior unit insulation can become an amplification site for microbial growth (mold), which may cause odors and serious health related indoor air quality problems. If there is evidence of microbial growth (mold) on the interior insulation, remove or replace the insulation prior to operating the system. Failure to remove microbial growth could result in serious health problems.

This unit is intended for indoor use only. To protect the unit from damage due to the elements, and to prevent possible IAQ contaminant sources from growing, the unit should be stored indoors. If indoor storage is not possible, the following provisions for outdoor storage must be met:

- Place the unit(s) on a dry surface or raise above the ground to assure adequate air circulation beneath the unit.
- Cover the unit(s) with a water proof tarp to protect them from the elements.
- Make provisions for continuous venting of the covered units to prevent moisture from standing on the unit(s) surfaces. Wet interior unit insulation can become an amplification site for microbial growth (mold) which has been determined to be a cause of odors and serious health related indoor air quality problems.
- Store units in the normal UP orientation to maintain oil in the compressor.
- Do not stack vertical units. Horizontal units may be stacked two high.

#### **Model Number Description**

All products are identified by a multiple-character model number that precisely identifies a particular type of unit. Its use will enable the owner/operator, installing contractors, and service engineers to define the operation, specific components, and other options for any specific unit.

When ordering replacement parts or requesting service, be sure to refer to the specific model number and serial number printed on the unit nameplate.

#### **Unit Description**

Before shipment, each unit is leak tested, dehydrated, charged with refrigerant and run tested for proper control operation.

#### **Unit Nameplate**

The unit nameplate is located on the outside of the control box access panel at the front of the unit. It includes the unit model number, serial number, electrical characteristics, refrigerant charge, and other pertinent unit data.

#### **General Information**

#### **Compressor Nameplate**

The nameplate for the compressors are located on the compressor shell.

#### Air-to- Refrigerant Coil

The air-to-refrigerant coil is aluminum fin, mechanically bonded to the copper tubing.

#### Water-to-Refrigerant Coil

The water-to-refrigerant coil is a copper or cupro-nickel (option) and steel tube (tube-within-a-tube) design, leak tested to assure there is no cross leakage between the water tube (copper/cupro-nickel) and refrigerant gas (steel tube).

Table 1. High/Low pressure switch

|    | Trip      | Recover   | Unit |
|----|-----------|-----------|------|
| LP | 40 +/-4   | 56 +/-4   | psig |
| HP | 650 +/-10 | 550 +/-10 | psig |

#### **Controls**

The control system offered to control the unit is the Tracer™ UC400 programmable BACnet™ unit controller. The UC400 controller is standard for all unit sizes.

All power wiring to the equipment is made at the unit power block. VSH/V 460V units require a neutral wire.

#### **System Input Devices and Functions**

A zone sensor or building automation system is required to operate the water-source heat pump. The flexibility of having several mode capabilities depends upon the type of sensor and/or remote panel selected.

Troubleshooting and connection diagrams for the UC400 control systems may be located in the back of this manual.

### Pump Module (field installed accessory)

The pump module shall consist of either a single or dual 1/6 HP bronze pump and a brass 3-way shut-off valve. Cast iron pumps are also acceptable. The pump module kits shall contain the necessary components for the installation, operation and maintenance of the water circuit of a closed-loop distributed pumping application.

Table 2. Refrigerant charge

| R-410A (ounces) |
|-----------------|
| 72              |
| 72              |
| 129             |
| 129             |
| 139             |
| 72              |
| 72              |
| 138             |
| 138             |
| 150             |
|                 |



### **Unit Dimensions**

Figure 1. Clearance dimensions\* VSH

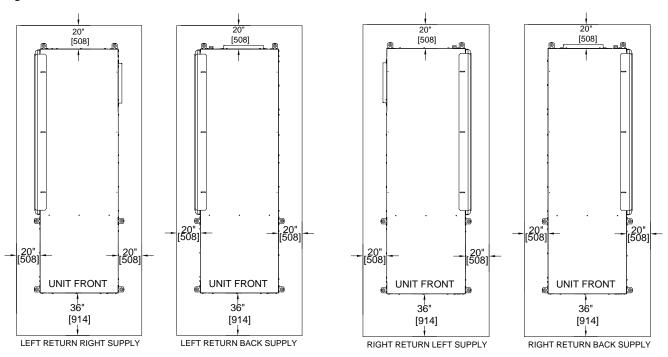
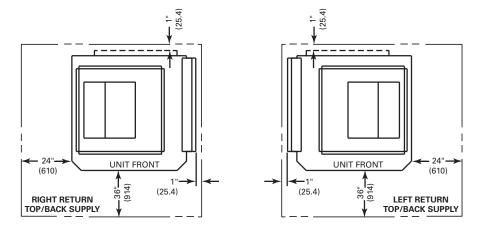
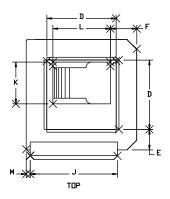




Figure 2. Clearance dimensions\* VSV




#### **Clearance Dimensions**

Access to the unit for service purposes should be provided at installation. All configurations require clearance (see Figure 2, p. 7 and Figure 1, p. 7) from other mechanical and electrical equipment (as shown) to enable panel removal from the unit for service/maintenance ability. Some local and/or NEC codes require a greater service clearance than listed below. Check all code requirements prior to unit installations. The installer is responsible for compliance with local and NEC code requirements.

**Note:** \*Units in a free return application will require more than a 1 inch (25.4 mm) clearance to provide proper air flow to the units air-to-refrigerant coil.

#### **Unit Dimensions**

Figure 3. Left return/top supply VSV



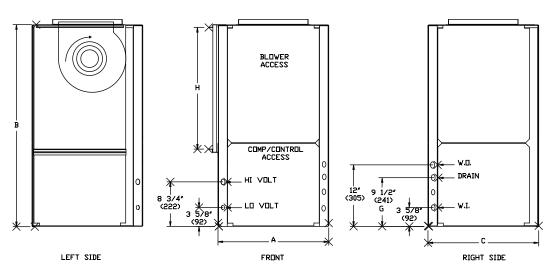
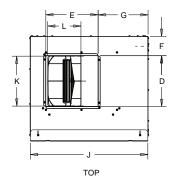



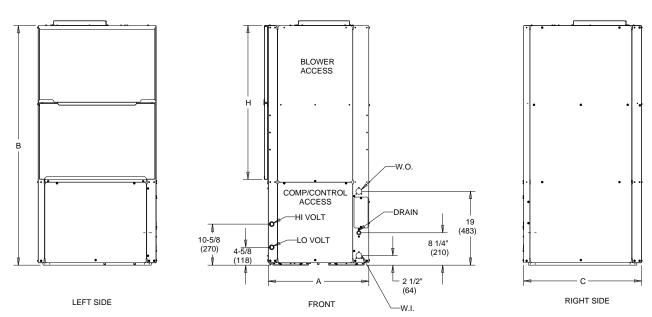

Table 3. Dimensional data-left return/top supply

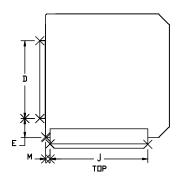
| Units   | A      | В      | С      | D     | E     | F     | G     | Н     | J      | K      | L      | М    | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|---------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|------|--------------|--------------|--------------|
| 024-033 | 24-1/2 | 41-7/8 | 26-1/2 | 18    | 3-1/4 | 5-3/4 | 9-1/2 | 19    | 23     | 10-1/2 | 13-1/2 | 3/16 | 3/4          | 3/4          | 3/4          |
|         | (622)  | (1064) | (673)  | (457) | (83)  | (146) | (241) | (483) | (584)  | (267)  | (343)  | (5)  | (19)         | (19)         | (19)         |
| 042–050 | 26-1/2 | 46-7/8 | 30-1/2 | 18    | 4-1/4 | 2     | 9-1/2 | 29    | 27-7/8 | 13-7/8 | 11-3/8 | 1/2  | 1            | 1            | 3/4          |
|         | (673)  | (1191) | (775)  | (457) | (108) | (51)  | (241) | (737) | (708)  | (352)  | (289)  | (13) | (25.4)       | (25.4)       | (19)         |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

Figure 4. Left return/top supply - 5 tons







Table 4. Dimensional data—left return/top supply - VSV060

| Units | А           | В            | С               | D               | E               | F          | G           | н                | J               | К           | L              | М   | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|-------|-------------|--------------|-----------------|-----------------|-----------------|------------|-------------|------------------|-----------------|-------------|----------------|-----|--------------|--------------|--------------|
| 060   | 26<br>(660) | 62<br>(1575) | 30-1/2<br>(775) | 13-1/4<br>(337) | 13-5/8<br>(346) | 5<br>(127) | 13<br>(330) | 39-3/4<br>(1010) | 30-3/8<br>(772) | 13<br>(330) | 8-5/8<br>(219) | N/A | 1<br>(25.4)  | 1<br>(25.4)  | 3/4<br>(19)  |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

#### **Unit Dimensions**

Figure 5. Left return/back supply VSV



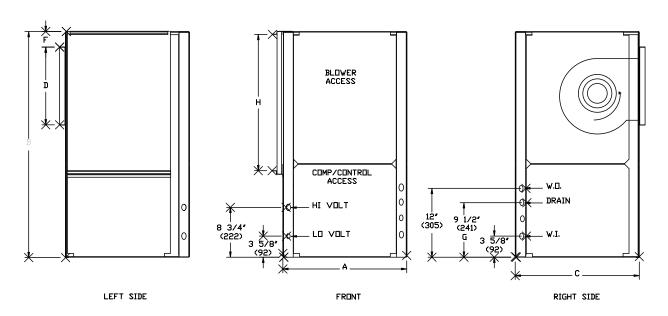



Table 5. Dimensional data-left return/back supply

| Units   | А      | В      | С      | D     | E     | F     | G     | Н     | J      | К      | L      | М    | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|---------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|------|--------------|--------------|--------------|
| 024-033 | 24-1/2 | 41-7/8 | 26-1/2 | 18    | 3-1/4 | 1-7/8 | 9-1/2 | 19    | 23     | 10-1/2 | 13-1/2 | 3/16 | 3/4          | 3/4          | 3/4          |
|         | (622)  | (1064) | (673)  | (457) | (83)  | (48)  | (241) | (483) | (584)  | (267)  | (343)  | (5)  | (19)         | (19)         | (19)         |
| 042–050 | 26-1/2 | 46-7/8 | 30-1/2 | 18    | 4-1/4 | 2     | 9-1/2 | 29    | 27-7/8 | 13-7/8 | 11-3/8 | 1/2  | 1            | 1            | 3/4          |
|         | (673)  | (1191) | (775)  | (457) | (108) | (51)  | (241) | (737) | (708)  | (352)  | (289)  | (13) | (25.4)       | (25.4)       | (19)         |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

Figure 6. Left return/back supply - 5 tons

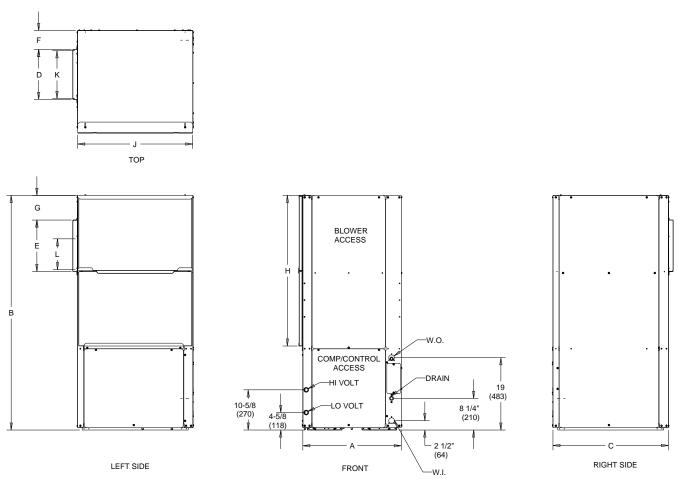


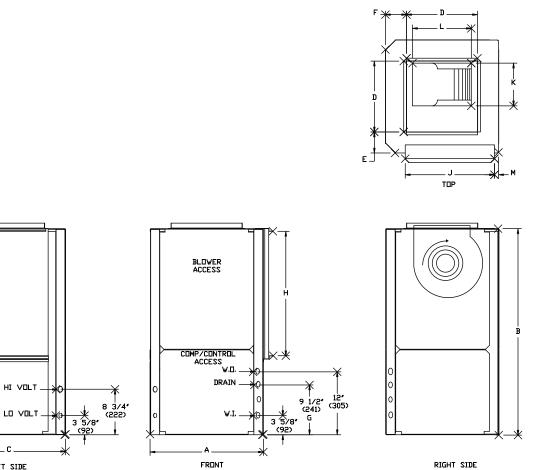

Table 6. Dimensional data-left return/back supply - VSV060

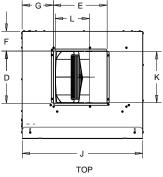
| Units | А           | В            | С               | D               | E               | F          | G              | Н                | J | К           | L              | М   | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|-------|-------------|--------------|-----------------|-----------------|-----------------|------------|----------------|------------------|---|-------------|----------------|-----|--------------|--------------|--------------|
| 060   | 26<br>(660) | 62<br>(1575) | 30-1/2<br>(775) | 13-1/4<br>(337) | 13-5/8<br>(346) | 5<br>(127) | 6-1/2<br>(165) | 39-3/4<br>(1010) |   | 13<br>(330) | 8-5/8<br>(219) | N/A | 1<br>(25.4)  | 1<br>(25.4)  | 3/4<br>(19)  |

**Note:** Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

#### **Unit Dimensions**

Figure 7. Right return/top supply VSV





Table 7. Dimensional data-right return/top supply

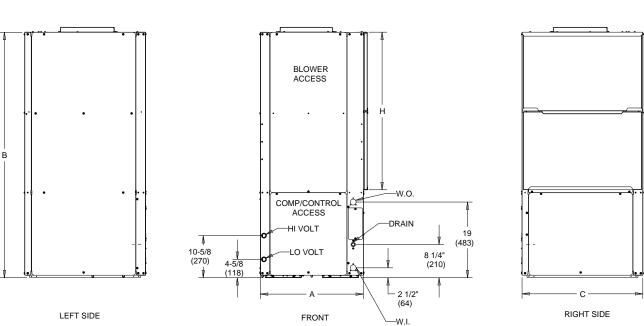
LEFT SIDE

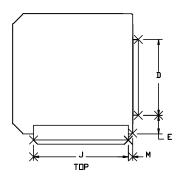
| Units   | А      | В      | С      | D     | E     | F     | G     | Н     | J      | К      | L      | М    | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|---------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|------|--------------|--------------|--------------|
| 024-033 | 24-1/2 | 41-7/8 | 26-1/2 | 18    | 3-1/4 | 5-3/4 | 9-1/2 | 19    | 23     | 10-1/2 | 13-1/2 | 3/16 | 3/4          | 3/4          | 3/4          |
|         | (622)  | (1064) | (673)  | (457) | (83)  | (146) | (241) | (483) | (584)  | (267)  | (343)  | (5)  | (19)         | (19)         | (19)         |
| 042–050 | 26-1/2 | 46-7/8 | 30-1/2 | 18    | 4-1/4 | 2     | 9-1/2 | 29    | 27-7/8 | 13-7/8 | 11-3/8 | 1/2  | 1            | 1            | 3/4          |
|         | (673)  | (1191) | (775)  | (457) | (108) | (51)  | (241) | (737) | (708)  | (352)  | (289)  | (13) | (25.4)       | (25.4)       | (19)         |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

Figure 8. Right return/top supply - 5 tons







Table 8. Dimensional data-right return/top supply - VSV060

| Units | Α           | В            | С               | D               | E               | F          | G              | н                | J               | K           | L              | М   | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|-------|-------------|--------------|-----------------|-----------------|-----------------|------------|----------------|------------------|-----------------|-------------|----------------|-----|--------------|--------------|--------------|
| 060   | 26<br>(660) | 62<br>(1575) | 30-1/2<br>(775) | 13-1/4<br>(337) | 13-5/8<br>(346) | 5<br>(127) | 7-7/8<br>(200) | 39-3/4<br>(1010) | 30-3/8<br>(772) | 13<br>(330) | 8-5/8<br>(219) | N/A | 1<br>(25.4)  | 1<br>(25.4)  | 3/4<br>(19)  |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

#### **Unit Dimensions**

Figure 9. Right return/back supply VSV



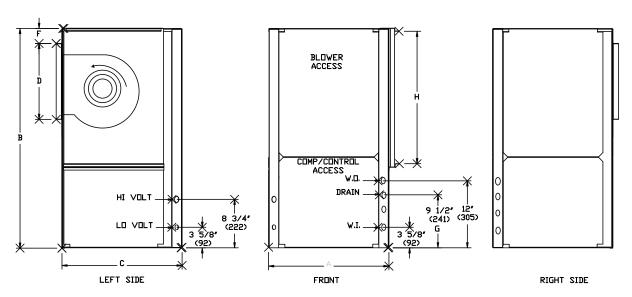



Table 9. Dimensional data-right return/back supply

| Units   | Α      | В      | С      | D     | E     | F     | G     | Н     | J      | К      | L      | М    | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|---------|--------|--------|--------|-------|-------|-------|-------|-------|--------|--------|--------|------|--------------|--------------|--------------|
| 024-033 | 24-1/2 | 41-7/8 | 26-1/2 | 18    | 3-1/4 | 1-7/8 | 9-1/2 | 19    | 23     | 10-1/2 | 13-1/2 | 3/16 | 3/4          | 3/4          | 3/4          |
|         | (622)  | (1064) | (673)  | (457) | (83)  | (48)  | (241) | (483) | (584)  | (267)  | (343)  | (5)  | (19)         | (19)         | (19)         |
| 042–050 | 26-1/2 | 46-7/8 | 30-1/2 | 18    | 4-1/4 | 2     | 9-1/2 | 29    | 27-7/8 | 13-7/8 | 11-3/8 | 1/2  | 1            | 1            | 3/4          |
|         | (673)  | (1191) | (775)  | (457) | (108) | (51)  | (241) | (737) | (708)  | (352)  | (289)  | (13) | (25.4)       | (25.4)       | (19)         |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

Figure 10. Right return/back supply - 5 tons

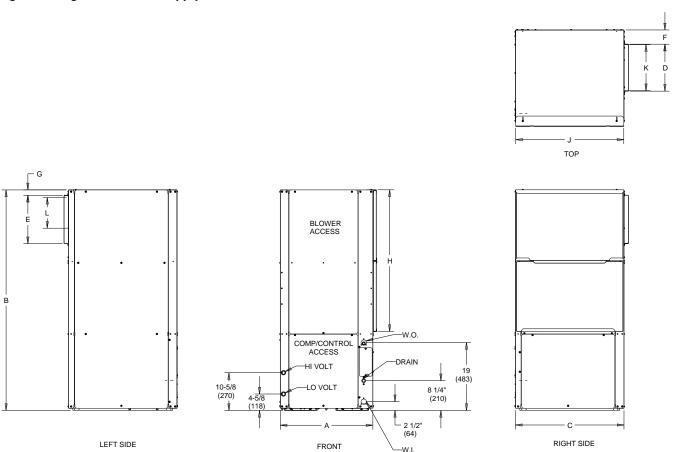



Table 10. Dimensional data-right return/back supply - VSV060

| Units | А           | В            | С               | D               | E               | F          | G             | н                | J               | К           | L              | М   | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|-------|-------------|--------------|-----------------|-----------------|-----------------|------------|---------------|------------------|-----------------|-------------|----------------|-----|--------------|--------------|--------------|
| 060   | 26<br>(660) | 62<br>(1575) | 30-1/2<br>(775) | 13-1/4<br>(337) | 13-5/8<br>(346) | 4<br>(102) | 1-1/2<br>(38) | 39-3/4<br>(1010) | 30-3/8<br>(772) | 13<br>(330) | 8-5/8<br>(219) | N/A | 1<br>(25.4)  | 1<br>(25.4)  | 3/4<br>(19)  |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

#### **Unit Dimensions**

Figure 11. Left return/back supply VSH

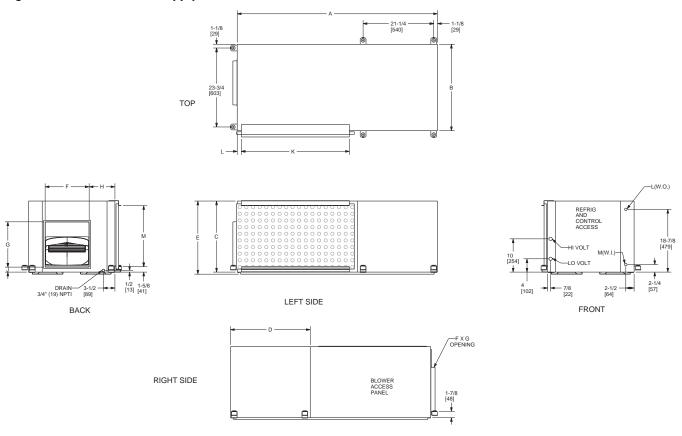



Table 11. Dimensional data - left return/back supply

| Units   | А      | В     | С      | D      | E     | FxG             | Н     | J     | К      | L     | М      | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|---------|--------|-------|--------|--------|-------|-----------------|-------|-------|--------|-------|--------|--------------|--------------|--------------|
| 024-033 | 60-1/4 | 26    | 21-3/8 | 24     | 22    | 13-1/4 x 13-5/8 | 7-3/4 | 1-1/2 | 32-1/2 | 1-1/4 | 18-3/8 | 3/4          | 3/4          | 3/4          |
|         | (1530) | (660) | (543)  | (610)  | (559) | (337) x (346)   | (197) | (38)  | (826)  | (32)  | (467)  | (19)         | (19)         | (19)         |
| 042–060 | 81-1/4 | 26    | 21-3/8 | 25-1/2 | 22    | 13-1/4 x 13-5/8 | 7-5/8 | 2-1/8 | 52     | 1-1/4 | 18-3/8 | 1            | 1            | 3/4          |
|         | (2064) | (660) | (543)  | (641)  | (559) | (337) x (346)   | (194) | (54)  | (1321) | (32)  | (467)  | (25.4)       | (25.4)       | (19)         |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

Figure 12. Left return/right supply VSH

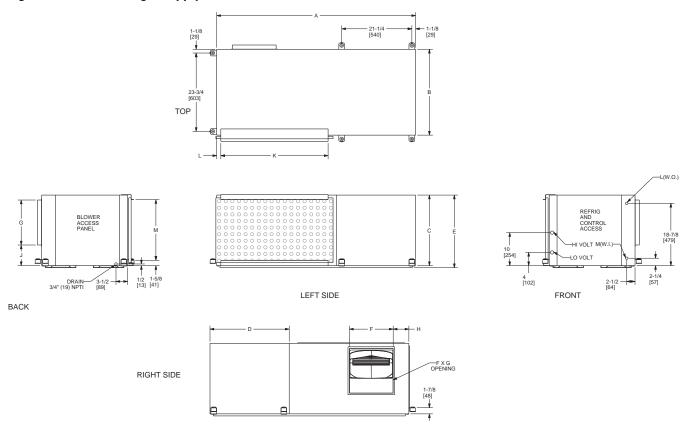



Table 12. Dimensional data - left return/right supply

| Units   | А      | В     | С      | D      | E     | FxG             | Н     | J     | к      | L     | М      | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|---------|--------|-------|--------|--------|-------|-----------------|-------|-------|--------|-------|--------|--------------|--------------|--------------|
| 024-033 | 60-1/4 | 26    | 21-3/8 | 24     | 22    | 13-1/4 x 13-5/8 | 4-3/4 | 6-1/4 | 32-1/2 | 1-1/4 | 18-3/8 | 3/4          | 3/4          | 3/4          |
|         | (1530) | (660) | (543)  | (610)  | (559) | (337) x (346)   | (121) | (159) | (826)  | (32)  | (467)  | (19)         | (19)         | (19)         |
| 042–060 | 81-1/4 | 26    | 21-3/8 | 25-1/2 | 22    | 13-1/4 x 13-5/8 | 7-3/4 | 6-1/4 | 52     | 1-1/4 | 18-3/8 | 1            | 1            | 3/4          |
|         | (2064) | (660) | (543)  | (641)  | (559) | (337) x (346)   | (121) | (159) | (1321) | (32)  | (467)  | (25.4)       | (25.4)       | (19)         |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

#### **Unit Dimensions**

Figure 13. Right return/back supply VSH

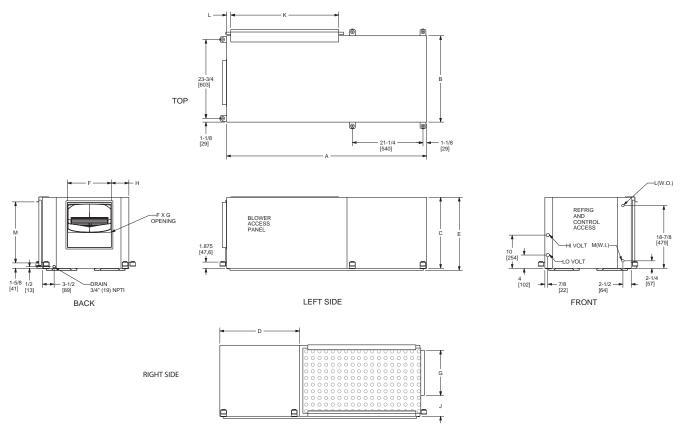



Table 13. Dimensional data — right return/back supply

| Units   | А      | В     | С      | D      | E     | FxG             | Н     | J     | К      | L     | М      | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|---------|--------|-------|--------|--------|-------|-----------------|-------|-------|--------|-------|--------|--------------|--------------|--------------|
| 024-033 | 60-1/4 | 26    | 21-3/8 | 24     | 22    | 13-1/4 x 13-5/8 | 5-1/4 | 6-1/4 | 32-1/2 | 1-1/4 | 18-3/8 | 3/4          | 3/4          | 3/4          |
|         | (1530) | (660) | (543)  | (610)  | (559) | (337) x (346)   | (133) | (159) | (826)  | (32)  | (467)  | (19)         | (19)         | (19)         |
| 042–060 | 81-1/4 | 26    | 21-3/8 | 25-1/2 | 22    | 13-1/4 x 13-5/8 | 5-1/8 | 6-1/4 | 52     | 1-1/4 | 18-3/8 | 1            | 1            | 3/4          |
|         | (2064) | (660) | (543)  | (641)  | (559) | (337) x (346)   | (130) | (159) | (1321) | (32)  | (467)  | (25.4)       | (25.4)       | (19)         |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

Figure 14. Right return/left supply VSH

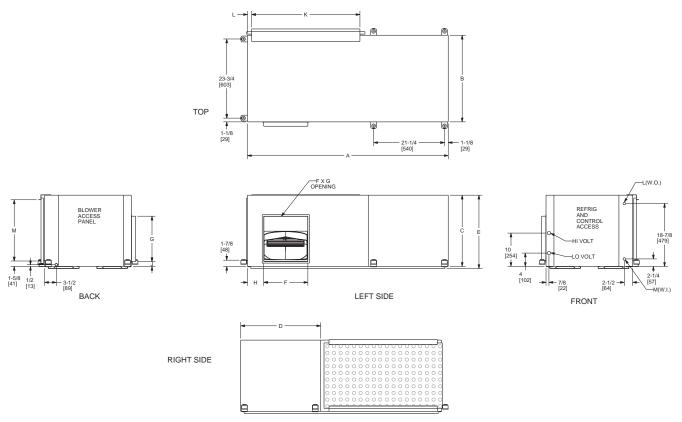



Table 14. Dimensional data — right return/left supply

| Units   | А      | В     | С      | D      | E     | FxG             | Н     | J     | К      | L     | М      | W.I.<br>NPTI | W.O.<br>NPTI | Drain<br>FPT |
|---------|--------|-------|--------|--------|-------|-----------------|-------|-------|--------|-------|--------|--------------|--------------|--------------|
| 024-033 | 60-1/4 | 26    | 21-3/8 | 24     | 22    | 13-1/4 x 13-5/8 | 4-7/8 | 1-1/2 | 32-1/2 | 1-1/4 | 18-3/8 | 3/4          | 3/4          | 3/4          |
|         | (1530) | (660) | (543)  | (610)  | (559) | (337) x (346)   | (124) | (38)  | (826)  | (32)  | (467)  | (19)         | (19)         | (19)         |
| 042–060 | 81-1/4 | 26    | 21-3/8 | 25-1/2 | 22    | 13-1/4 x 13-5/8 | 4-3/4 | 1-1/2 | 52     | 1-1/4 | 18-3/8 | 1            | 1            | 3/4          |
|         | (2064) | (660) | (543)  | (641)  | (559) | (337) x (346)   | (121) | (38)  | (1321) | (32)  | (467)  | (25.4)       | (25.4)       | (19)         |

Note: Access to the unit for service purposes should be provided at installation. Local and/or NEC codes may require greater service clearance. Check all code requirements prior to the unit installation. Installer is responsible for following all local and NEC code requirements.

# **Unit Fan Performance**

Table 15. Blower performance - VSH

| Model   |      |       |     |       |     |       |          |       |     | Ex    | terna    | ıl stat | ic pr | essure | e (ind | hes o     | f wa | ter)  |     |       |     |       |     |       |     |       |     |
|---------|------|-------|-----|-------|-----|-------|----------|-------|-----|-------|----------|---------|-------|--------|--------|-----------|------|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|
|         | CENA | О     | 1   | 0.0   | )5  | 0.    | 1        | 0.1   | 15  | 0.    | 2        | 0.2     | 25    | 0.     | 3      | 0.3       | 35   | 0.    | 4   | 0.4   | 5   | 0.    | .5  | 0.!   | 55  | 0.    | .6  |
|         | CFM  | kW    | RPM | kW    | RPM | kW    | RPM      | kW    | RPM | kW    | RPM      | kW      | RPM   | kW     | RPM    | kW        | RPM  | kW    | RPM | kW    | RPM | kW    | RPM | kW    | RPM | kW    | RPM |
|         | 796  | 0.040 | 300 | 0.050 | 362 | 0.060 | 419      | 0.070 | 470 | 0.080 | 516      | 0.090   | 557   | 0.099  | 595    | 0.109     | 629  | 0.118 | 660 | 0.127 | 689 | 0.136 | 715 | 0.145 | 739 | 0.155 | 762 |
| VSH024  | 840  | 0.042 | 311 | 0.053 | 372 | 0.064 | 427      | 0.074 | 477 | 0.085 | 523      | 0.095   | 564   | 0.105  | 601    | 0.115     | 634  | 0.125 | 665 | 0.134 | 693 | 0.144 | 720 | 0.154 | 745 | 0.163 | 768 |
| V311024 | 885  | 0.045 | 323 | 0.057 | 382 | 0.068 | 436      | 0.079 | 485 | 0.090 | 529      | 0.100   | 570   | 0.111  | 606    | 0.121     | 640  | 0.131 | 670 | 0.142 | 698 | 0.152 | 725 | 0.162 | 750 | 0.172 | 774 |
|         | 930  | 0.048 | 334 | 0.060 | 392 | 0.072 | 445      | 0.083 | 493 | 0.095 | 536      | 0.106   | 576   | 0.117  | 612    | 0.128     | 645  | 0.139 | 675 | 0.149 | 703 | 0.160 | 730 | 0.171 | 755 | 0.181 | 779 |
|         | 974  | 0.052 | 346 | 0.064 | 403 | 0.076 | 454      | 0.088 | 501 | 0.100 | 544      | 0.112   | 582   | 0.123  | 618    | 0.135     | 650  | 0.146 | 680 | 0.157 | 708 | 0.168 | 734 | 0.180 | 760 | 0.191 | 785 |
|         | 1019 | 0.056 | 359 | 0.069 | 414 | 0.081 | 464      | 0.094 | 509 | 0.106 | 551      | 0.118   | 589   | 0.130  | 623    | 0.142     | 655  | 0.154 | 685 | 0.166 | 713 | 0.177 | 739 | 0.189 | 765 | 0.200 | 790 |
|         |      |       |     |       |     |       |          |       |     |       |          |         |       |        |        |           |      |       |     |       |     |       |     |       |     |       |     |
|         | CFM  | 0     |     | 0.0   | )5  | 0.    | 1        | 0.1   | 15  | 0.    | 2        | 0.2     | 25    | 0.     | _      | 0.3       | 35   | 0.    | 4   | 0.4   | 5   | 0.    | _   | 0.!   | 55  | 0.    | _   |
|         |      | kW    | RPM | kW    | RPM | kW    | RPM      | kW    | RPM | kW    | RPM      | kW      | RPM   | kW     | RPM    | kW        | RPM  | kW    | RPM | kW    | RPM | kW    | RPM | kW    | RPM | kW    | RPM |
|         | 1014 |       | 397 | 0.097 | 451 | 0.110 | 501      | 0.123 | 546 | 0.135 |          | 0.148   |       | 0.160  | 658    | 0.172     | 690  | 0.184 | 719 | 0.196 | 747 | 0.208 | 774 | 0.220 | 799 | 0.232 | 824 |
| VSH033  | 1076 |       | 415 | 0.104 | 467 | 0.118 | 515      | 0.131 | 558 | 0.144 | 597      | 0.157   | 633   | 0.170  |        | 0.183     | 697  | 0.195 | 726 | 0.208 | 754 | 0.221 | 780 | 0.233 | 806 | 0.246 | 831 |
|         | 1138 |       | 433 | 0.112 |     | 0.126 |          | 0.140 | 570 | 0.154 |          | 0.168   |       | 0.181  | 675    | 0.195     | 705  | 0.208 | 733 | 0.221 | 760 | 0.234 | 787 | 0.247 | 813 | 0.260 | 839 |
|         | 1200 | 0.106 | 452 | 0.121 | 500 | 0.136 | 544      | 0.151 | 583 | 0.165 | 620      | 0.179   | 653   | 0.193  | 684    | 0.207     | 713  | 0.221 | 741 | 0.235 | 767 | 0.248 | 793 | 0.262 | 819 | 0.276 | 846 |
|         | 1262 | 0.116 | 472 | 0.132 | 518 | 0.147 | 559      | 0.162 | 597 | 0.177 | 632      | 0.192   | 664   | 0.206  | 693    | 0.221     | 722  | 0.235 | 749 | 0.249 | 775 | 0.264 | 800 | 0.278 | 826 | 0.292 | 853 |
|         | 1324 | 0.127 | 493 | 0.143 | 536 | 0.159 | 575      | 0.175 | 611 | 0.190 | 644      | 0.205   | 675   | 0.220  | 703    | 0.235     | 731  | 0.250 | 757 | 0.265 | 782 | 0.280 | 808 | 0.295 | 833 | 0.309 | 860 |
|         |      |       |     |       |     |       |          | ı     |     |       |          |         |       | 1      |        |           |      |       |     |       |     |       |     |       |     |       |     |
|         | CFM  | 0     |     | 0.0   | 1   | 0.    | 1        | 0.1   |     | 0.    |          | 0.2     | _     | 0.     |        | 0.3       | 1    | 0.    | 1   | 0.4   | _   | 0.    | _   | 0.!   |     | 0.    | 1   |
|         |      | kW    | RPM | kW    | RPM | kW    | RPM      | kW    | RPM | kW    | RPM      | kW      | RPM   | kW     | RPM    | kW        | RPM  | kW    | RPM | kW    | RPM | kW    | RPM | kW    | RPM | kW    | RPM |
|         | 1414 |       | 451 | 0.117 | 488 | 0.133 |          | 0.149 |     | 0.164 |          | 0.180   |       | 0.196  |        | 0.211     |      | 0.226 |     | 0.241 | 726 | 0.256 | 749 | 0.270 | 771 | 0.284 | 792 |
| VSH042  | 1485 | -     | 471 | 0.133 | 507 | 0.150 |          | 0.166 | 573 | 0.183 | 604      | 0.199   | 633   | 0.216  |        | 0.232     | 689  | 0.248 |     | 0.264 | 738 | 0.279 | 762 | 0.294 | 783 | 0.309 | 804 |
|         | 1579 |       | 499 | 0.157 | 532 | 0.175 | 565      | 0.192 | 596 | 0.210 |          | 0.228   |       | 0.245  |        | 0.262     | 708  | 0.279 |     | 0.296 | 756 | 0.312 | 779 | 0.328 | 800 | 0.344 | 821 |
|         | 1650 |       | 519 | 0.177 | 552 | 0.195 | 583      | 0.214 | 613 | 0.232 | 642      | 0.251   | 670   | 0.269  | 697    | 0.287     | 722  | 0.305 |     | 0.322 | 770 | 0.340 | 792 | 0.356 | 814 | 0.373 | 834 |
|         | 1721 | 0.179 | 539 | 0.198 |     | 0.217 | 601      | 0.237 | 631 | 0.256 | 659      | 0.276   |       | 0.295  |        | 0.314     |      | 0.332 | 761 | 0.351 | 784 | 0.369 | 806 | 0.386 | 828 | 0.403 | 848 |
|         | 1815 | 0.208 | 566 | 0.229 | 596 | 0.250 | 625      | 0.270 | 654 | 0.291 | 681      | 0.312   | 707   | 0.332  | /33    | 0.352     | 757  | 0.372 | 781 | 0.391 | 803 | 0.411 | 825 | 0.429 | 846 | 0.448 | 866 |
|         |      | 0     |     | 0.0   | \   | 0.    |          | 0.1   |     | 0.    |          | 0.2     | \     | 0.     | 2      |           |      | 0.    | 4   | 0.4   |     | 0.    | _   | 0.!   |     | 0.    |     |
|         | СҒМ  | kW    | RPM | kW    | RPM | kW    | r<br>RPM | kW    | RPM | kW    | Z<br>RPM | kW      | RPM   | kW     | RPM    | 0.3<br>kW | RPM  | kW    | RPM |       | RPM | kW    | RPM | kW    | RPM | kW    | RPM |
|         | 1414 |       | 451 | 0.117 | 488 |       | 523      | 0.149 | 556 |       | 588      | 0.180   |       | 0.196  |        |           | 675  | 0.226 | 701 | 0.241 | 726 |       | 749 | 0.270 | 771 | 0.284 | 792 |
|         | 1414 | 0.102 | 471 | 0.117 | 507 | 0.133 | 541      | 0.149 | 573 | 0.164 | 604      | 0.180   | 633   | 0.196  | 662    | 0.211     | 689  | 0.226 |     | 0.241 | 738 | 0.256 | 762 | 0.270 | 783 | 0.284 | 804 |
| VSH050  | 1579 |       | 471 | 0.133 | 532 | 0.150 | 565      | 0.192 | 573 | 0.183 |          | 0.199   | 654   | 0.216  | 681    | 0.232     | 708  | 0.248 |     | 0.264 | 756 | 0.279 | 779 | 0.294 | 800 | 0.309 | 804 |
|         | 1650 |       | 519 | 0.157 | 552 |       | 583      | 0.192 | 613 | 0.210 | 642      | 0.228   | 670   | 0.245  | 697    | 0.282     | 708  | 0.279 | 747 | 0.296 | 770 | 0.312 | 792 | 0.326 | 814 |       |     |
|         | 1721 | 0.158 | 539 | 0.177 | 571 | 0.195 | 601      | 0.214 | 631 | 0.232 | 659      | 0.251   | 686   | 0.269  | 712    | 0.287     | 737  | 0.305 | 761 | 0.322 | 784 | 0.340 | 806 | 0.356 | 828 | 0.373 | 834 |
|         |      |       |     |       |     |       |          |       |     |       |          |         |       |        |        |           | -    |       | _   |       |     |       |     |       |     |       |     |
|         | 2077 | 0.301 | 624 | 0.326 | 652 | 0.350 | 679      | 0.374 | 705 | 0.399 | 730      | 0.423   | 754   | 0.447  | 778    | 0.471     | 801  | 0.494 | 823 | 0.517 | 845 | 0.540 | 866 | 0.562 | 886 | 0.584 | 906 |

Table 15. Blower performance – VSH (continued)

| Model  |       |       |     |       |     |       |     |       |     | Ext   | terna | ıl stat | ic pr | essure | e (inc | hes c | of wa | ter)  |     |       |            |       |     |       |     |       |     |
|--------|-------|-------|-----|-------|-----|-------|-----|-------|-----|-------|-------|---------|-------|--------|--------|-------|-------|-------|-----|-------|------------|-------|-----|-------|-----|-------|-----|
|        | СЕМ   | O     | )   | 0.0   | )5  | 0.    | 1   | 0.1   | 5   | 0.:   | 2     | 0.2     | 25    | 0.     | 3      | 0.3   | 35    | 0.    | 4   | 0.4   | <b>1</b> 5 | 0.    | 5   | 0.5   | 55  | 0.    | .6  |
|        | CFIVI | kW    | RPM   | kW      | RPM   | kW     | RPM    | kW    | RPM   | kW    | RPM | kW    | RPM        | kW    | RPM | kW    | RPM | kW    | RPM |
|        | 1803  | 0.240 | 574 | 0.262 | 610 | 0.282 | 641 | 0.301 | 671 | 0.319 | 698   | 0.337   | 724   | 0.354  | 748    | 0.371 | 770   | 0.388 | 792 | 0.405 | 813        | 0.422 | 833 | 0.439 | 854 | 0.457 | 875 |
| VSH060 | 1908  | 0.275 | 603 | 0.298 | 637 | 0.319 | 667 | 0.340 | 696 | 0.360 | 722   | 0.379   | 747   | 0.397  | 770    | 0.416 | 792   | 0.434 | 813 | 0.452 | 834        | 0.470 | 854 | 0.488 | 874 | 0.507 | 895 |
| V3H060 | 2014  | 0.314 | 631 | 0.338 | 664 | 0.361 | 693 | 0.383 | 721 | 0.405 | 746   | 0.425   | 770   | 0.445  | 792    | 0.465 | 814   | 0.484 | 834 | 0.503 | 855        | 0.523 | 874 | 0.542 | 894 | 0.562 | 915 |
|        | 2120  | 0.357 | 659 | 0.383 | 690 | 0.408 | 719 | 0.431 | 745 | 0.454 | 770   | 0.476   | 793   | 0.497  | 815    | 0.518 | 836   | 0.539 | 856 | 0.560 | 876        | 0.580 | 895 | 0.601 | 915 | 0.623 | 935 |
|        | 2226  | 0.405 | 686 | 0.432 | 716 | 0.458 | 744 | 0.483 | 769 | 0.508 | 793   | 0.531   | 816   | 0.554  | 837    | 0.577 | 857   | 0.599 | 877 | 0.621 | 896        | 0.644 | 916 | 0.666 | 935 | 0.689 | 956 |
|        | 2332  | 0.457 | 711 | 0.486 | 741 | 0.514 | 768 | 0.541 | 793 | 0.567 | 816   | 0.592   | 838   | 0.617  | 859    | 0.641 | 879   | 0.665 | 898 | 0.689 | 917        | 0.712 | 936 | 0.736 | 955 | 0.761 | 976 |

#### Table 16. Blower performance – VSV

| Model  |       |       |     |       |     |       |     |       |     | Ex    | terna | ıl stat | ic pr | essure | e (inc | ches c | of wa | ter)  |     |       |            |       |     |       |     |       |     |
|--------|-------|-------|-----|-------|-----|-------|-----|-------|-----|-------|-------|---------|-------|--------|--------|--------|-------|-------|-----|-------|------------|-------|-----|-------|-----|-------|-----|
|        | СЕМ   | C     | )   | 0.0   | )5  | 0.    | 1   | 0.1   | 5   | 0.    | 2     | 0.2     | 25    | 0.     | 3      | 0.3    | 35    | 0.    | 4   | 0.4   | <b>1</b> 5 | 0.    | 5   | 0.!   | 55  | 0.    | 6   |
|        | CFIVI | kW    | RPM   | kW      | RPM   | kW     | RPM    | kW     | RPM   | kW    | RPM | kW    | RPM        | kW    | RPM | kW    | RPM | kW    | RPM |
|        | 837   | 0.070 | 456 | 0.079 | 505 | 0.090 | 551 | 0.101 | 595 | 0.114 | 637   | 0.127   | 677   | 0.140  | 714    | 0.153  | 750   | 0.167 | 784 | 0.180 | 815        | 0.192 | 845 | 0.204 | 873 | 0.214 | 899 |
| VSV024 | 884   | 0.081 | 483 | 0.090 | 529 | 0.101 | 572 | 0.113 | 614 | 0.126 | 654   | 0.140   | 692   | 0.154  | 729    | 0.168  | 763   | 0.182 | 796 | 0.196 | 827        | 0.210 | 857 | 0.222 | 885 | 0.234 | 911 |
|        | 930   | 0.092 | 508 | 0.102 | 551 | 0.113 | 593 | 0.125 | 633 | 0.139 | 671   | 0.153   | 708   | 0.168  | 743    | 0.183  | 776   | 0.198 | 808 | 0.213 | 839        | 0.227 | 868 | 0.240 | 896 | 0.253 | 923 |
|        | 977   | 0.105 | 534 | 0.115 | 575 | 0.127 | 614 | 0.140 | 652 | 0.154 | 689   | 0.168   | 724   | 0.184  | 758    | 0.200  | 790   | 0.215 | 821 | 0.231 | 851        | 0.246 | 880 | 0.261 | 908 | 0.274 | 935 |
|        | 1023  | 0.118 | 559 | 0.129 | 597 | 0.141 | 635 | 0.154 | 671 | 0.169 | 706   | 0.184   | 739   | 0.200  | 772    | 0.217  | 804   | 0.233 | 834 | 0.250 | 864        | 0.266 | 892 | 0.281 | 920 | 0.296 | 947 |

|        | СЕМ   | О     | )   | 0.0   | )5  | 0.    | 1   | 0.1   | 15  | 0.    | 2   | 0.2   | 25  | 0.    | 3   | 0.3   | 35  | 0.    | 4   | 0.4   | 15  | 0.    | 5   | 0.!   | 55  | 0.    | 6   |
|--------|-------|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|
|        | CFIVI | kW    | RPM |
|        | 1080  | 0.118 | 538 | 0.128 | 571 | 0.138 | 603 | 0.151 | 634 | 0.164 | 664 | 0.178 | 693 | 0.192 | 722 | 0.207 | 750 | 0.222 | 777 | 0.237 | 803 | 0.252 | 829 | 0.267 | 854 | 0.280 | 879 |
| VSV033 | 1140  | 0.137 | 568 | 0.147 | 598 | 0.158 | 628 | 0.171 | 657 | 0.184 | 685 | 0.199 | 713 | 0.214 | 740 | 0.230 | 766 | 0.246 | 792 | 0.262 | 818 | 0.278 | 844 | 0.293 | 869 | 0.308 | 894 |
|        | 1200  | 0.158 | 596 | 0.168 | 624 | 0.179 | 652 | 0.192 | 679 | 0.207 | 705 | 0.222 | 731 | 0.238 | 757 | 0.254 | 783 | 0.271 | 808 | 0.288 | 833 | 0.305 | 858 | 0.322 | 883 | 0.338 | 908 |
|        | 1260  | 0.181 | 625 | 0.191 | 651 | 0.203 | 676 | 0.217 | 701 | 0.232 | 726 | 0.247 | 751 | 0.264 | 775 | 0.281 | 800 | 0.299 | 824 | 0.317 | 849 | 0.335 | 874 | 0.352 | 898 | 0.369 | 923 |
|        | 1320  | 0.206 | 653 | 0.217 | 676 | 0.229 | 700 | 0.243 | 723 | 0.259 | 746 | 0.275 | 770 | 0.292 | 793 | 0.310 | 817 | 0.329 | 841 | 0.348 | 865 | 0.366 | 889 | 0.385 | 913 | 0.403 | 938 |

|        | СЕМ   | O     | )   | 0.0   | )5  | 0.    | 1   | 0.1   | 15  | 0.:   | 2   | 0.2   | 25  | 0.    | 3   | 0.3   | 35  | 0.    | 4   | 0.4   | 15  | 0.    | 5   | 0.5   | 55  | 0.    | 6    |
|--------|-------|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|-----|-------|------|
|        | CFIVI | kW    | RPM  |
|        | 1485  | 0.175 | 553 | 0.207 | 599 | 0.237 | 641 | 0.266 | 680 | 0.294 | 716 | 0.320 | 750 | 0.346 | 782 | 0.372 | 812 | 0.398 | 841 | 0.424 | 870 | 0.451 | 898 | 0.480 | 927 | 0.509 | 956  |
| VSV042 | 1568  | 0.202 | 580 | 0.236 | 624 | 0.268 | 665 | 0.299 | 703 | 0.328 | 737 | 0.357 | 770 | 0.385 | 801 | 0.413 | 830 | 0.441 | 859 | 0.469 | 887 | 0.498 | 916 | 0.528 | 944 | 0.559 | 974  |
|        | 1650  | 0.231 | 607 | 0.267 | 650 | 0.301 | 689 | 0.334 | 725 | 0.366 | 758 | 0.396 | 790 | 0.426 | 820 | 0.456 | 848 | 0.486 | 876 | 0.516 | 904 | 0.547 | 932 | 0.579 | 961 | 0.613 | 991  |
|        | 1733  | 0.262 | 634 | 0.300 | 674 | 0.336 | 711 | 0.371 | 746 | 0.405 | 778 | 0.437 | 808 | 0.469 | 837 | 0.501 | 865 | 0.533 | 893 | 0.566 | 920 | 0.599 | 948 | 0.633 | 977 | 0.668 | 1007 |
|        | 1815  | 0.294 | 659 | 0.334 | 698 | 0.373 | 733 | 0.410 | 766 | 0.446 | 797 | 0.481 | 826 | 0.515 | 854 | 0.549 | 881 | 0.583 | 908 | 0.617 | 935 | 0.652 | 963 | 0.689 | 991 | 0.726 | 1021 |

#### Table 16. Blower performance – VSV (continued)

| Model  |                              |                                        |                            |                               |                          |                                        |                          |                                        |                          | Ex                                     | terna                    | ıl stat                                | ic pr                           | essure                        | e (ind                   | ches c                            | of wa                    | ter)                                   |                          |                                        |                          |                                   |                          |                             |                          |                                      |                          |
|--------|------------------------------|----------------------------------------|----------------------------|-------------------------------|--------------------------|----------------------------------------|--------------------------|----------------------------------------|--------------------------|----------------------------------------|--------------------------|----------------------------------------|---------------------------------|-------------------------------|--------------------------|-----------------------------------|--------------------------|----------------------------------------|--------------------------|----------------------------------------|--------------------------|-----------------------------------|--------------------------|-----------------------------|--------------------------|--------------------------------------|--------------------------|
|        | CENA                         | С                                      | )                          | 0.0                           | )5                       | 0.                                     | 1                        | 0.1                                    | 15                       | 0.                                     | 2                        | 0.2                                    | 25                              | О.:                           | 3                        | 0.3                               | 35                       | 0.                                     | 4                        | 0.4                                    | 15                       | 0.                                | 5                        | 0.!                         | 55                       | 0.                                   | 6                        |
|        | CFM                          | kW                                     | RPM                        | kW                            | RPM                      | kW                                     | RPM                      | kW                                     | RPM                      | kW                                     | RPM                      | kW                                     | RPM                             | kW                            | RPM                      | kW                                | RPM                      | kW                                     | RPM                      | kW                                     | RPM                      | kW                                | RPM                      | kW                          | RPM                      | kW                                   | RPM                      |
|        | 1701                         | 0.265                                  | 636                        | 0.305                         | 678                      | 0.343                                  | 716                      | 0.379                                  | 752                      | 0.414                                  | 785                      | 0.448                                  | 817                             | 0.481                         | 847                      | 0.514                             | 875                      | 0.547                                  | 904                      | 0.581                                  | 932                      | 0.615                             | 960                      | 0.650                       | 990                      | 0.687                                | 1020                     |
| VSV050 | 1796                         | 0.304                                  | 666                        | 0.346                         | 706                      | 0.387                                  | 742t                     | 0.426                                  | 776                      | 0.463                                  | 808                      | 0.500                                  | 838                             | 0.535                         | 867                      | 0.571                             | 895                      | 0.607                                  | 922                      | 0.643                                  | 950                      | 0.679                             | 978                      | 0.717                       | 1007                     | 0.757                                | 1038                     |
|        | 1890                         | 0.345                                  | 695                        | 0.391                         | 733                      | 0.434                                  | 767                      | 0.475                                  | 799                      | 0.515                                  | 829                      | 0.554                                  | 858                             | 0.593                         | 886                      | 0.631                             | 912                      | 0.669                                  | 939                      | 0.708                                  | 966                      | 0.747                             | 994                      | 0.788                       | 1023                     | 0.830                                | 1054                     |
|        | 1985                         | 0.390                                  | 724                        | 0.438                         | 759                      | 0.483                                  | 791                      | 0.528                                  | 821                      | 0.570                                  | 850                      | 0.612                                  | 877                             | 0.653                         | 903                      | 0.694                             | 929                      | 0.735                                  | 955                      | 0.777                                  | 981                      | 0.819                             | 1009                     | 0.862                       | 1038                     | 0.906                                | 1068                     |
|        | 2079                         | 0.436                                  | 751                        | 0.486                         | 783                      | 0.535                                  | 814                      | 0.582                                  | 842                      | 0.628                                  | 868                      | 0.672                                  | 894                             | 0.716                         | 919                      | 0.760                             | 944                      | 0.804                                  | 969                      | 0.848                                  | 995                      | 0.892                             | 1022                     | 0.938                       | 1050                     | 0.986                                | 1081                     |
|        |                              |                                        |                            |                               |                          |                                        |                          |                                        |                          |                                        |                          |                                        |                                 |                               |                          |                                   |                          |                                        |                          |                                        |                          |                                   |                          |                             |                          |                                      |                          |
|        | CENA                         | O                                      | )                          | 0.0                           | )5                       | 0.                                     | 1                        | 0.1                                    | 15                       | 0.                                     | 2                        | 0.2                                    | 25                              | 0.                            | 3                        | 0.3                               | 35                       | 0.                                     | 4                        | 0.4                                    | 15                       | 0.                                | 5                        | 0.!                         | 55                       | 0.                                   | 6                        |
|        | СҒМ                          | kW                                     | RPM                        |                               | RPM                      |                                        | 1<br>RPM                 |                                        | RPM                      |                                        | 2<br>RPM                 |                                        | PPM                             |                               | 3<br>RPM                 |                                   | RPM                      |                                        | 4<br>RPM                 |                                        | RPM                      |                                   | 5<br>RPM                 | 0.!<br>kW                   | RPM                      |                                      | 6<br>RPM                 |
|        |                              | kW                                     | RPM                        |                               | RPM                      | kW                                     | RPM                      | kW                                     | RPM                      | kW                                     | RPM                      | kW                                     | RPM                             |                               | RPM                      | kW                                | RPM                      | kW                                     | RPM                      | kW                                     | RPM                      | kW                                | RPM                      |                             | RPM                      |                                      | RPM                      |
| Venovo | 1816                         | <b>kW</b> 0.153                        | <b>RPM</b> 515             | kW                            | <b>RPM</b> 558           | <b>kW</b> 0.214                        | <b>RPM</b> 598           | <b>kW</b> 0.242                        | <b>RPM</b> 634           | <b>kW</b> 0.269                        | <b>RPM</b> 667           | <b>kW</b><br>0.295                     | <b>RPM</b> 696                  | kW                            | <b>RPM</b> 724           | <b>kW</b> 0.344                   | <b>RPM</b> 750           | <b>kW</b> 0.368                        | <b>RPM</b> 774           | <b>kW</b> 0.392                        | <b>RPM</b> 798           | <b>kW</b> 0.417                   | <b>RPM</b> 821           | kW                          | <b>RPM</b> 845           | kW                                   | <b>RPM</b> 870           |
| VSV060 | 1816<br>1918                 | <b>kW</b> 0.153 0.185                  | <b>RPM</b> 515 542         | <b>kW</b> 0.185               | <b>RPM</b> 558 585       | <b>kW</b><br>0.214<br>0.249            | <b>RPM</b> 598 623       | <b>kW</b><br>0.242<br>0.279            | 634<br>658               | <b>kW</b><br>0.269<br>0.308            | <b>RPM</b> 667 690       | <b>kW</b><br>0.295<br>0.335            | <b>RPM</b> 696 719              | <b>kW</b> 0.319               | <b>RPM</b> 724 746       | <b>kW</b><br>0.344<br>0.388       | 750<br>771               | <b>kW</b><br>0.368<br>0.414            | <b>RPM</b> 774 794       | <b>kW</b><br>0.392<br>0.440            | <b>RPM</b> 798 818       | <b>kW</b><br>0.417<br>0.466       | <b>RPM</b><br>821<br>840 | <b>kW</b> 0.443             | <b>RPM</b><br>845<br>864 | <b>kW</b><br>0.469                   | <b>RPM</b><br>870<br>888 |
| VSV060 | 1816<br>1918<br>2019         | <b>kW</b> 0.153 0.185                  | <b>RPM</b> 515 542 570     | <b>kW</b> 0.185 0.218         | <b>RPM</b> 558 585 612   | kW<br>0.214<br>0.249<br>0.289          | <b>RPM</b> 598 623 649   | kW<br>0.242<br>0.279<br>0.321          | 634<br>658<br>683        | <b>kW</b><br>0.269<br>0.308<br>0.351   | <b>RPM</b> 667 690 714   | kW<br>0.295<br>0.335<br>0.380          | <b>RPM</b> 696 719 742          | kW<br>0.319<br>0.362<br>0.409 | 724<br>746<br>768        | <b>kW</b> 0.344 0.388 0.437       | 750<br>771<br>792        | <b>kW</b> 0.368 0.414 0.464            | 774<br>794<br>815        | <b>kW</b> 0.392 0.440 0.492            | 798<br>818<br>838        | <b>kW</b> 0.417 0.466 0.520       | <b>RPM</b> 821 840 860   | <b>kW</b> 0.443 0.493 0.549 | <b>RPM</b> 845 864 883   | <b>kW</b><br>0.469<br>0.521          | 870<br>888<br>907        |
| VSV060 | 1816<br>1918<br>2019<br>2121 | kW<br>0.153<br>0.185<br>0.220<br>0.261 | <b>RPM</b> 515 542 570 599 | kW<br>0.185<br>0.218<br>0.256 | 558<br>585<br>612<br>639 | kW<br>0.214<br>0.249<br>0.289<br>0.334 | 598<br>623<br>649<br>675 | kW<br>0.242<br>0.279<br>0.321<br>0.367 | 634<br>658<br>683<br>708 | kW<br>0.269<br>0.308<br>0.351<br>0.400 | 667<br>690<br>714<br>738 | kW<br>0.295<br>0.335<br>0.380<br>0.431 | RPM<br>696<br>719<br>742<br>765 | kW<br>0.319<br>0.362<br>0.409 | 724<br>746<br>768<br>790 | <b>kW</b> 0.344 0.388 0.437 0.491 | 750<br>771<br>792<br>814 | kW<br>0.368<br>0.414<br>0.464<br>0.520 | 774<br>794<br>815<br>837 | kW<br>0.392<br>0.440<br>0.492<br>0.550 | 798<br>818<br>838<br>859 | <b>kW</b> 0.417 0.466 0.520 0.579 | 821<br>840<br>860<br>881 | <b>kW</b> 0.443 0.493 0.549 | 845<br>864<br>883<br>903 | <b>kW</b><br>0.469<br>0.521<br>0.578 | 870<br>888<br>907<br>926 |



### **MERV Filter**

Table 17. Added pressure drop through MERV filters (inches water column) - VSH

| Model No. | CFM  | MERV 8 | MERV 13 |
|-----------|------|--------|---------|
|           | 742  | 0.08   | 0.09    |
|           | 836  | 0.09   | 0.10    |
| VSH024    | 930  | 0.10   | 0.12    |
|           | 977  | 0.11   | 0.12    |
|           | 1024 | 0.11   | 0.13    |
|           | 952  | 0.10   | 0.12    |
|           | 1076 | 0.12   | 0.14    |
| VSH033    | 1200 | 0.14   | 0.16    |
|           | 1262 | 0.15   | 0.17    |
|           | 1324 | 0.21   | 0.19    |
|           | 1324 | 0.09   | 0.10    |
|           | 1487 | 0.10   | 0.11    |
| VSH042    | 1650 | 0.11   | 0.13    |
|           | 1731 | 0.12   | 0.14    |
|           | 1813 | 0.13   | 0.15    |
|           | 1517 | 0.10   | 0.12    |
|           | 1704 | 0.12   | 0.14    |
| VSH050    | 1890 | 0.13   | 0.16    |
|           | 1983 | 0.14   | 0.17    |
|           | 2077 | 0.15   | 0.18    |
|           | 1890 | 0.13   | 0.16    |
|           | 2016 | 0.14   | 0.17    |
| VSH060    | 2120 | 0.15   | 0.18    |
|           | 2225 | 0.16   | 0.19    |
|           | 2329 | 0.17   | 0.21    |

Note: Added pressure drop should be considered when utilizing optional 2" MERV 8 and MERV 13 filters.

Table 18. Added pressure drop through MERV filters (inches water column) - VSV

| Model No. | CFM  | MERV 8 | MERV 13 |
|-----------|------|--------|---------|
|           | 837  | 0.12   | 0.14    |
|           | 884  | 0.13   | 0.15    |
| VSV024    | 930  | 0.14   | 0.16    |
|           | 977  | 0.15   | 0.17    |
|           | 1023 | 0.15   | 0.18    |
|           | 1080 | 0.16   | 0.20    |
|           | 1140 | 0.18   | 0.21    |
| VSV033    | 1200 | 0.19   | 0.23    |
|           | 1260 | 0.20   | 0.24    |
|           | 1320 | 0.21   | 0.26    |



### **Unit Fan Performance**

Table 18. Added pressure drop through MERV filters (inches water column) – VSV (continued)

| Model No. | CFM  | MERV 8 | MERV 13 |
|-----------|------|--------|---------|
|           | 1485 | 0.13   | 0.15    |
|           | 1568 | 0.14   | 0.16    |
| VSV042    | 1650 | 0.15   | 0.17    |
|           | 1733 | 0.15   | 0.18    |
|           | 1815 | 0.16   | 0.19    |
|           | 1701 | 0.15   | 0.18    |
|           | 1796 | 0.16   | 0.19    |
| VSV050    | 1890 | 0.17   | 0.21    |
|           | 1985 | 0.18   | 0.22    |
|           | 2079 | 0.19   | 0.23    |
|           | 1900 | 0.14   | 0.16    |
|           | 2021 | 0.15   | 0.17    |
| VSV060    | 2121 | 0.16   | 0.19    |
|           | 2221 | 0.17   | 0.20    |
|           | 2321 | 0.18   | 0.21    |

Notes: Added pressure drop should be considered when utilizing optional 2" MERV 8 and MERV 13 filters.



# **General Data**

Table 19. Cabinet

| Model V                  | SH                  | VSH024      | VSH033      | VSH042      | VSH050      | VSH060      |
|--------------------------|---------------------|-------------|-------------|-------------|-------------|-------------|
|                          | Length (inch)       | 60.2        | 60.2        | 81.2        | 81.2        | 81.2        |
| Unit size                | Height (inch)       | 22.0        | 22.0        | 22.0        | 22.0        | 22.0        |
|                          | Width (inch)        | 26.0        | 26.0        | 26.0        | 26.0        | 26.0        |
| Compressor type          |                     | Rotary      | Rotary      | Scroll      | Scroll      | Scroll      |
| Approximate weight       | With pallet (lb)    | 381         | 381         | 591         | 591         | 591         |
| Approximate weight       | Without pallet (lb) | 333         | 333         | 524         | 524         | 524         |
| Filter size              | Inches              | 16 x 20 x 1 | 16 x 20 x 1 | 20 x 25 x 1 | 20 x 25 x 1 | 20 x 25 x 1 |
| Filler Size              | Inches              | 20 x 20 x 1 | 20 x 20 x 1 | 20 x 30 x 1 | 20 x 30 x 1 | 20 x 30 x 1 |
| Water in/out size (NPTI) | Inches              | 3/4         | 3/4         | 1           | 1           | 1           |
| Condensate size (NPTI)   | Inches              | 3/4         | 3/4         | 3/4         | 3/4         | 3/4         |
| Blower wheel size        | Direct drive (inch) | 11 x 10     |

#### Table 20. Air-to-refrigerant coil

| Model VSH                       | VSH024      | VSH033      | VSH042      | VSH050      | VSH060      |
|---------------------------------|-------------|-------------|-------------|-------------|-------------|
| Working pressure                | 650         | 650         | 650         | 650         | 650         |
| Tubes high                      | 20          | 20          | 20          | 20          | 20          |
| Tubes deep                      | 3           | 3           | 4           | 4           | 4           |
| Number of circuits              | 3           | 3           | 5           | 5           | 5           |
| Finned volume (H, W, D: inches) | 20x31.5x2.6 | 20x31.5x2.6 | 20x51x3.464 | 20x51x3.464 | 20x51x3.464 |
| Coil surface area (ft²)         | 4.375       | 4.375       | 7.083       | 7.083       | 7.083       |
| Fins per inch                   | 12          | 12          | 12          | 12          | 12          |
| Tube material                   | Copper      | Copper      | Copper      | Copper      | Copper      |
| Tube OD (inch)                  | 3/8         | 3/8         | 3/8         | 3/8         | 3/8         |
| Wall thickness (inch)           | 0.014       | 0.014       | 0.014       | 0.014       | 0.014       |
| Return bends                    | Copper      | Copper      | Copper      | Copper      | Copper      |

#### Table 21. Water volume

| Model VSH                                | VSH024 | VSH033 | VSH042 | VSH050 | VSH060 |
|------------------------------------------|--------|--------|--------|--------|--------|
| Internal water volume (in <sup>3</sup> ) | 142.4  | 142.4  | 331.2  | 331.2  | 331.2  |
| Internal water volume (ft <sup>3</sup> ) | 0.082  | 0.082  | 0.192  | 0.192  | 0.192  |
| Internal water volume (gal)              | 0.616  | 0.616  | 1.434  | 1.434  | 1.434  |



### **General Data**

Table 22. Cabinet

| Model V                       | Model VSV           |                 |                 | VSV042          | VSV050          | VSV060        |
|-------------------------------|---------------------|-----------------|-----------------|-----------------|-----------------|---------------|
|                               | Length (inch)       | 26-1/2          | 26-1/2          | 30-1/2          | 30-1/2          | 30 1/2        |
| Unit size                     | Height (inch)       | 41-7/8          | 41-7/8          | 46-7/8          | 46-7/8          | 62 1/2        |
|                               | Width (inch)        | 24-1/2          | 24-1/2          | 26-1/2          | 26-1/2          | 26            |
| Compressor type               | Rotary              | Rotary          | Scroll          | Scroll          | Scroll          |               |
| Approximate weight            | With pallet (lb)    | 334             | 334             | 495             | 495             | 5111          |
| Approximate weight            | Without pallet (lb) | 309             | 309             | 460             | 460             | 488           |
| Filter size                   | Actual (inch)       | 19-7/8 x 24-7/8 | 19-7/8 x 24-7/8 | 27-7/8 x 29-7/8 | 27-7/8 x 29-7/8 | 20 x 30 Qty 2 |
| Water in/out size (NPTI)      | Inches              | 3/4             | 3/4             | 1               | 1               | 1             |
| Condensate size (NPTI) Inches |                     | 3/4             | 3/4             | 3/4             | 3/4             | 3/4           |
| Blower wheel size             | Direct drive (inch) | 11 x 8          | 11 x 8          | 12 x 11         | 12 x 11         | 11 x 10       |

### Table 23. Air-to-refrigerant coil

| Model VSV                            | VSV024        | VSV033        | VSV042        | VSV50         | VSV060         |
|--------------------------------------|---------------|---------------|---------------|---------------|----------------|
| Working pressure                     | 650           | 650           | 650           | 650           | 650            |
| Tubes high                           | 18            | 18            | 24            | 24            | 39             |
| Tubes deep                           | 3             | 3             | 4             | 4             | 4              |
| Number of circuits                   | 4             | 4             | 6             | 6             | 6              |
| Finned volume (H, W, D: inches)      | 18 x 21 x 2.6 | 18 x 21 x 2.6 | 24 x 25 x 3.5 | 24 x 25 x 3.5 | 39x29.25x3.464 |
| Coil surface area (ft <sup>2</sup> ) | 2.63          | 2.63          | 4.17          | 4.17          | 6.97           |
| Fins per inch                        | 12            | 12            | 12            | 12            | 12             |
| Tube material                        | Copper        | Copper        | Copper        | Copper        | Copper         |
| Tube OD (inch)                       | 3/8           | 3/8           | 3/8           | 3/8           | 3/8            |
| Wall thickness (inch)                | 0.014         | 0.014         | 0.014         | 0.014         | 0.014          |
| Return bends                         | Copper        | Copper        | Copper        | Copper        | Copper         |

#### Table 24. Water volume

| Model VSV                                | VSV024 | VSV033 | VSV042 | VSV050 | VSV060 |
|------------------------------------------|--------|--------|--------|--------|--------|
| Internal water volume (in <sup>3</sup> ) | 212    | 212    | 414    | 414    | 414    |
| Internal water volume (ft <sup>3</sup> ) | 0.123  | 0.123  | 0.24   | 0.24   | 0.24   |
| Internal water volume (gal)              | 0.918  | 0.918  | 1.792  | 1.792  | 1.792  |

Table 25. ISO ratings (VSH)(a)

| Model  | Loading | Rated water flow (GPM) | Rated Air Flow (CFM) | Cooling capacity WLHP (BTUH) | EER WLHP | Heating capacity WLHP (BTUH) | сор wlhp | Cooling capacity GWHP (BTUH) | EER GWHP | Heating capacity GWHP (BTUH) | сор бwнр | Cooling capacity GLHP (BTUH) | EER GLHP | Heating capacity GLHP (BTUH) | сор бінр |
|--------|---------|------------------------|----------------------|------------------------------|----------|------------------------------|----------|------------------------------|----------|------------------------------|----------|------------------------------|----------|------------------------------|----------|
| VSH024 | Full    | 6.2                    | 930                  | 25,100                       | 18.30    | 30,300                       | 6.44     | 28,400                       | 31.76    | 24,300                       | 5.33     | 26,200                       | 21.82    | 18,500                       | 4.35     |
| VSH024 | Partial | 6.2                    | 625                  | 13,800                       | 23.67    | 15,900                       | 8.64     | 15,500                       | 48.23    | 12,400                       | 6.37     | 15,000                       | 36.43    | 10,300                       | 4.99     |
| VSH033 | Full    | 8.6                    | 1200                 | 33,800                       | 15.79    | 40,200                       | 5.85     | 37,900                       | 25.01    | 32,300                       | 4.98     | 35,300                       | 18.51    | 24,700                       | 4.10     |
| VSH033 | Partial | 8.6                    | 720                  | 17,600                       | 21.96    | 21,000                       | 7.71     | 19,700                       | 41.82    | 16,600                       | 5.94     | 18,900                       | 32.23    | 14,300                       | 4.96     |
| VSH042 | Full    | 10.5                   | 1650                 | 42,600                       | 18.60    | 51,800                       | 6.70     | 47,300                       | 30.90    | 42,000                       | 5.60     | 44,600                       | 22.00    | 31,500                       | 4.50     |
| VSH042 | Partial | 10.5                   | 1065                 | 24,100                       | 23.26    | 29,800                       | 8.21     | 27,200                       | 48.49    | 23,500                       | 6.45     | 26,100                       | 35.38    | 18,800                       | 5.39     |
| VSH050 | Full    | 12.7                   | 1890                 | 50,200                       | 16.50    | 64,400                       | 5.80     | 56,200                       | 26.00    | 52,500                       | 5.10     | 52,400                       | 19.30    | 40,100                       | 4.20     |
| VSH050 | Partial | 12.7                   | 1200                 | 28,400                       | 22.29    | 36,100                       | 7.52     | 32,400                       | 42.02    | 29,100                       | 6.16     | 31,000                       | 33.67    | 24,000                       | 5.28     |
| VSH060 | Full    | 15.6                   | 2100                 | 60,700                       | 14.80    | 81,600                       | 5.30     | 67,300                       | 22.80    | 66,800                       | 4.70     | 63,200                       | 17.00    | 50,400                       | 3.80     |
| VSH060 | Partial | 15.6                   | 1323                 | 36,400                       | 20.56    | 46,500                       | 6.77     | 40,900                       | 37.58    | 37,400                       | 5.72     | 39,100                       | 31.43    | 31,300                       | 5.06     |

<sup>(</sup>a) Note: Rated in accordance with ISO Standard 13256-1 - 1 1998, Water-to-Air and Brine-to-Air Heat Pumps. Certified conditions are 80.6°F DB/66.2°F WB EAT in cooling and 68°F DB/59°F WB EAT in heating. Entering liquid temperature in cooling is 86°F for Water Loop, 77°F for Ground Loop (full load), 68°F for Ground Loop (part load), and 59°F for Ground Water. Entering liquid temperature in heating is 68°F for Water Loop, 32°F for Ground Loop (full load), 41°F for Ground Loop (part load), and 50°F for Ground Water.

Table 26. ISO ratings (VSV)(a)

| Model  | Loading | Rated water flow (GPM) | Rated Air Flow (CFM) | Cooling capacity WLHP (BTUH) | EER WLHP | Heating capacity WLHP (BTUH) | сор wlhp | Cooling capacity GWHP (BTUH) | EER GWHP | Heating capacity GWHP (BTUH) | сор бwнр | Cooling capacity GLHP (BTUH) | EER GLHP | Heating capacity GLHP (BTUH) | сор бінр |
|--------|---------|------------------------|----------------------|------------------------------|----------|------------------------------|----------|------------------------------|----------|------------------------------|----------|------------------------------|----------|------------------------------|----------|
| VSV024 | Full    | 6.2                    | 930                  | 24,600                       | 18.44    | 30,300                       | 6.10     | 27,800                       | 33.24    | 24,400                       | 5.20     | 25,900                       | 22.32    | 18,400                       | 4.17     |
| VSV024 | Partial | 6.2                    | 625                  | 13,100                       | 22.58    | 15,900                       | 7.62     | 15,000                       | 48.48    | 12,100                       | 6.13     | 14,300                       | 35.31    | 9,900                        | 4.81     |
| VSV033 | Full    | 8.3                    | 1200                 | 32,900                       | 15.47    | 40,400                       | 5.46     | 36,600                       | 24.67    | 32,400                       | 4.77     | 34,300                       | 18.08    | 24,500                       | 3.86     |
| VSV033 | Partial | 8.3                    | 720                  | 17,100                       | 20.81    | 21,500                       | 6.96     | 19,400                       | 40.79    | 16,800                       | 5.59     | 18,500                       | 31.59    | 14,100                       | 4.60     |
| VSV042 | Full    | 10.9                   | 1650                 | 44,100                       | 18.25    | 54,700                       | 5.95     | 50,100                       | 32.46    | 43,600                       | 5.08     | 46,200                       | 22.03    | 31,900                       | 3.98     |
| VSV042 | Partial | 10.9                   | 1200                 | 25,500                       | 24.17    | 29,400                       | 7.50     | 28,700                       | 51.26    | 22,700                       | 5.85     | 26,900                       | 40.50    | 17,800                       | 4.59     |
| VSV050 | Full    | 13.0                   | 1890                 | 51,200                       | 15.72    | 68,800                       | 5.32     | 57,800                       | 26.19    | 54,600                       | 4.58     | 54,100                       | 18.76    | 41,400                       | 3.75     |
| VSV050 | Partial | 13.0                   | 1200                 | 29,900                       | 22.08    | 36,800                       | 6.88     | 33,500                       | 42.46    | 28,500                       | 5.50     | 32,800                       | 34.00    | 23,400                       | 4.62     |
| VSV060 | Full    | 15.6                   | 2100                 | 61,800                       | 15.60    | 81,200                       | 5.50     | 70,400                       | 25.40    | 65,400                       | 4.80     | 64,600                       | 18.30    | 50,000                       | 4.00     |
| VSV060 | Partial | 15.6                   | 1323                 | 35,900                       | 21.28    | 46,300                       | 7.30     | 41,300                       | 41.38    | 36,200                       | 5.91     | 39,600                       | 32.88    | 30,400                       | 5.29     |



### Installation

#### **General Installation Checks**

The checklist below is a summary of the steps required to successfully install a commercial unit. This checklist is intended to acquaint the installing personnel with what is required in the installation process. It does not replace the detailed instructions called out in the applicable sections of this manual.

 Remove packaging and inspect the unit. Check the unit for shipping damage and material shortage; file a freight claim and notify appropriate sales representation.

**Note:** The VSV units have been tied to the skid by (2) shipping bolts. The removal of these bolts will require a 3/8 inch (9.7 mm) ratchet with a ½ inch (12.7 mm) socket.

**Note:** The VSH units have been secured to the skid by shipping brackets. The removal requires a ½" socket with a 3/8" ratchet.

- 2. Verify the correct model, options and voltage from the unit nameplate.
- 3. Pull out all field attached parts (i.e. filter rack, duct collar, filter and mounting screws) from the unit packaging for field mounting.
- 4. Verify the installation location of the unit will provide the required clearance for proper operation.
- 5. Remove refrigeration access panel and inspect the unit. Be certain the refrigerant tubing has clearance from adjacent parts.

**Note:** Removal of compressor shipping brackets is required on models VSHE 042, 050, 060 & VSVE060. The removal of the shipping brackets requires a 1/2" socket with a 3/8" ratchet. A bracket is provided on the right and left side of the compressor and requires the removal of 4 bolts per bracket.

- 6. Fabricate and install duct work.
- Install and connect a condensate drain line and trap to the drain connection.

#### **AWARNING**

#### Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/ tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

#### **AWARNING**

# Proper Field Wiring and Grounding Required!

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state electrical codes. Failure to follow codes could result in death or serious injury.

#### Main Electrical

- 8. Verify the power supply complies with the unit nameplate specifications.
- Inspect all control panel components; tighten any loose connections.
- Connect properly sized and protected power supply wiring to a field-supplied/installed disconnect switch and to the power block.
- Install proper grounding wires to an earth ground. VSV/VSH 460V units require a neutral (a four wire system).

**Note:** All field-installed wiring must comply with NEC and applicable local codes.

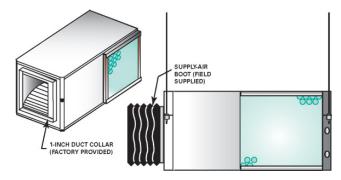
#### Low Voltage Wiring (AC) Requirements

- 12. Install the zone sensor.
- 13. Connect properly sized control wiring to the proper termination points between the zone sensor and the unit control panel.

#### Filter Installation

Each unit ships with 1 inch (25.4 mm) or 2 inch (50.8 mm) disposable, MERV 8 or MERV 13 filter(s). The filter is factory installed.

**Note:** Do not operate the unit without filters.


#### **Supply-Air Ductwork**

Install the 1 inch (25.4 mm) supply-air duct flange to the unit with the (8) 5/16 inch (7.94 mm) factory supplied head screws. The duct collar assembly for each unit is shipped with the unit in the same box where the IOM manual is located.

When attaching the field ductwork to the unit, provide a watertight flexible connector at the unit to prevent operating sounds from transmitting through the ductwork. See Figure 15, p. 29.

Elbows with turning vanes or splitters are recommended to minimize air noise due to turbulence and to reduce static pressure.

Figure 15. Flexible supply-air connector (field provided)

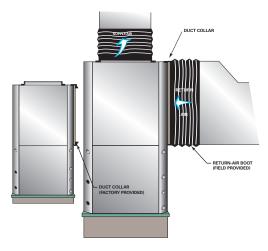


placed up stream of the unit or placed within a field provided filter rack assembly.

Figure 17. Ducted panel



#### **Return-Air Ductwork**


The equipment factory ships with the filter rail and filter(s) installed for free return.

When a ducted return is required, a ducted filter rack or ducted panel must be installed on the unit. When attaching the field ductwork to the unit, provide a water tight flexible connector at the unit to prevent operating sounds from transmitting through the ductwork. See Figure 16, p. 29.

Elbows with turning vanes or splitters are recommended to minimize air noise due to turbulence and to reduce static pressure.

**Note:** Installation of a return-air ducted panel or ducted filter rack require the removal of the filter rails.

Figure 16. Flexible return-air connector (field provided)



#### **Return Air Ducted Panel**

#### **Ducted panel**

The return-air arrangement may be easily converted from a free return-air system to a ducted return-air system with the addition of a return-air ducted panel. By replacing the filter rail with the return-air panel, a complete seal from the duct to the unit is possible. The 1-inch duct panel facilitates ease of field connection to the mechanical system. This accessory is typically used when the return air filter is

Table 27. Return air ducted panel (horizontal only)

| Unit          | Α     | В     | Part Number    |
|---------------|-------|-------|----------------|
| 024, 033      | 31.5″ | 19.2″ | 4476 0334 0100 |
| 042, 050, 060 | 51.1″ | 19.2″ | 4476 0335 0100 |

#### **Ducted Filter Rack**

When it is necessary to have filter access at the unit in a ducted return, a ducted filter rack is available. This option allows access to the filter at the unit. Vertical unit filter racks are available in right or left access configurations. Horizontal units are available in side or bottom access configurations.

Figure 18. Ducted filter rack

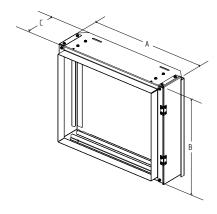
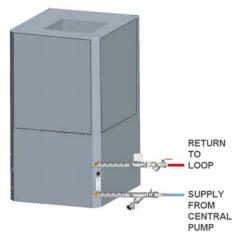



Table 28. Ducted filter opening size

| Unit              | Α     | В     | С    |
|-------------------|-------|-------|------|
| VSH 024, 033      | 35.8″ | 20.2" | 5.5″ |
| VSH 042, 050, 060 | 54.8″ | 20.2" | 5.5″ |

#### Installation

Table 29. Ducted filter opening size


| Unit         | Α     | В     | С    |
|--------------|-------|-------|------|
| VSV 024, 033 | 22.4" | 25.7″ | 4.3" |
| VSV 042, 050 | 26.6" | 30.7″ | 5.5" |
| VSV060       | 30.5" | 40.1" | 5.5" |

#### **Sound Attenuation Pad**

For sound-sensitive installations, a vibration pad (field provided) should be placed beneath the vertical unit. The pad should be  $\frac{1}{2}$  inch (12.7 mm) thick, and equal to the overall unit foot print.

#### **Supply/Return Pipe Connections**

Figure 19. Supply/return pipe connections



Connect the supply and return hoses to the water-inlet (from supply) and water-outlet (to return) of the unit. For vibration isolation, it is recommended that flexible steel braided hoses be installed instead of hard piping the equipment to the main loop system. Figure 19, p. 30 shows connection of a Hays Measurflo® balancing hose kit to the water-in and water-out of a vertical unit.

Note: Figure 19, p. 30 example incorporates the Hays Measurflo® balancing hose kit and a 2-position isolation valve into the system design. An isolation valve is often used in variable-speed pumping applications. The isolation valve is designed to stop water flow to the unit during non-operation times. This allows the loop water pumps to run only when a requirement for pumping is needed for greater energy efficiency of the overall system design.

#### System balancing hose kit

For automatic system balancing of a water source heat pump, the Mesurflo® self-balancing hose kit provides a constant flow rate over the pressure differential rage of 2 to 80 psid. As system pressure changes (through further

addition of heat pumps, for example) each individual flow control valve will automatically adjust to the new system conditions. In variable water volume applications, a self-balancing hose kit can provide continuous balancing because of its ability to automatically adjust to the varying system conditions.

**Note:** At low differential pressure the flow area required to achieve higher flow can exceed the flow area available for the respective series. Therefore, the minimum pressure differential requirement is increased for the higher flow ranges of each series Mesurflo valve.

Ontional Isolation Valve

2-Position Valve

Optional Isolation Valve 2-Position Valve

Figure 20. Ball valve kit (manual)

Mesurmeter w/PTs

Mesurmeter w/PTs

Mesurmeter w/PTs

Mesurmeter w/PTs

Tripped Turis CONTROL
CONTROL
Vol. VE

Ball Valve

Flex Hose

Optional Yball Strainer
w/Blowdown Valve & Hose Connector

Figure 21. MeasurfloVac kit (automatic)

2510 Mesurflo w/PT's

Additional accessories, such as a strainer are recommended for use to eliminate contaminants from entering the co-axial water-to-refrigerant heat exchanger.

#### Cleaning and Flushing the Water Loop

After the piping system is complete, the flexible hose connectors should be disconnected from the unit and linked together using field supplied couplings (avoiding trash settle-out in the condenser). An extra pipe may be necessary to connect the hose kits.



1. Water circulation system should be filled with clean water using the water make up connections.

Note: Air vents should be open during filling.

With the air vents closed, start the circulating pump and then crack the air vents to bleed off the trapped air, assuring circulation through all components of the system.

**Note:** Make up water must be available to the system to replace the volume formerly occupied by the air that is bled off.

- With the air vented and the water circulating, the entire system should be checked for leaks with repairs made as required.
- 4. Operate the supplementary heat system (boiler) if applicable making checks per manufacturer's instructions. During this operation, visual checks should be made for leaks that may have occurred due to increased heat. Repair as required.
- Open the system at the lowest point for the initial blow down (making sure the make up water is equal to the water being dumped). Continue blow down until the water leaving the drain runs clear, but not less than 2 hours.
- Shut down pumps and supplementary heat system (if applicable). Reconnect the hoses placing the water-torefrigerant heat exchanger in the water circulating system.

**Note:** Vents should be open when the pumps and supplementary heat system are shut down.

#### **Field Installed Power Wiring**

#### **WARNING**

# Proper Field Wiring and Grounding Required!

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state electrical codes. Failure to follow codes could result in death or serious injury.

#### **AWARNING**

#### **Live Electrical Components!**

During installation, testing, servicing and troubleshooting of this product, it may be necessary to work with live electrical components. Have a qualified licensed electrician or other individual who has been properly trained in handling live electrical components perform these tasks. Failure to follow all electrical safety precautions when exposed to live electrical components could result in death or serious injury.

#### **NOTICE:**

#### **Use Copper Conductors Only!**

Unit terminals are not designed to accept other types of conductors. Failure to use copper conductors may result in equipment damage.

Verify that the power supply available is compatible with the unit's nameplate. Use only copper conductors to connect the power supply to the unit.

#### **Main Unit Power Wiring**

#### **AWARNING**

# Proper Field Wiring and Grounding Required!

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state electrical codes. Failure to follow codes could result in death or serious injury.

A field supplied disconnect switch must be installed at or near the unit in accordance with the National Electric Code (NEC latest edition).

Location of the applicable electric service entrance for HIGH (line voltage) may be found in the Dimensions section of this manual.

The high-voltage connection is made at the power block inside the unit control box. Refer to the customer connection diagram that is shipped with the unit for specific termination points.

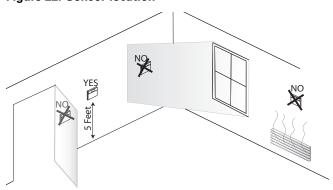
Provide proper grounding for the unit in accordance with the local and national codes.

#### **Control Power Transformer**

The 24V control power transformer is to be used only with the accessories called out in this manual. All variablespeed WSHP units include a 75 VA control transformer equipped with a circuit breaker. If a circuit breaker trips, turn OFF all power to the unit before attempting to reset it.



#### Installation


### **A**WARNING

### Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/ tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

# Sensor Location

Figure 22. Sensor location



Location of the zone sensor is an important element of effective room control.

Areas where the zone sensor should not be located include:

- Behind doors or corners
- · Near hot or cold air ducts
- Near radiant heat (this is heat emitted from appliances or the sun)
- · Near concealed pipes or chimneys
- On outside walls or other non conditioned surfaces

In air-flows from adjacent zones or other units.Controls Using 24 VAC

Before installing any wire, refer to the electrical access locations in "Unit Dimensions," p. 7 of this manual.

Ensure that the AC control wiring between the controls and the unit's termination point does not exceed three (3) ohms/conductor for the length of the run.

**Note:** Resistance in excess of  $3\Omega$  per conductor may cause component failure due to insufficient AC voltage supply.

Check all loads and conductors for grounds, shorts, and mis-wiring.

Use copper conductors unless otherwise specified.

Do not run the AC low voltage wiring in the same conduit with the high voltage power wiring.

Table 30. 24V AC conductors

| Distance from unit to control | Recommended wire size |
|-------------------------------|-----------------------|
| 0-460 feet                    | 18 gauge              |
| 461-732 feet                  | 16 gauge              |
| 733-1000 feet                 | 14 gauge              |
|                               |                       |



# **Electrical Data**

### **WARNING**

### **Rotating Components!**

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

Table 31. VSH electrical data

| Model No. | Unit Volts | Total Unit<br>FLA | Comp RLA<br>(ea) | No. of<br>Compressors | Blower<br>Motor FLA | Blower<br>Motor hp | Fan<br>Motor<br>Num. | Minimum<br>Circuit<br>Ampacity | Maximum Overcurrent Protective Device |
|-----------|------------|-------------------|------------------|-----------------------|---------------------|--------------------|----------------------|--------------------------------|---------------------------------------|
|           | 208/60/1   | 10.2              | 9.2              | 1                     | 0.97                | 1/2                | 1                    | 12.47                          | 20                                    |
| VSH024    | 230/60/1   | 10.2              | 9.2              | 1                     | 0.97                | 1/2                | 1                    | 12.47                          | 20                                    |
|           | 460/60/3   | 3.7               | 2.9              | 1                     | 1.29                | 1/2                | 1                    | 4.43                           | 15                                    |
|           | 208/60/1   | 14.4              | 12.9             | 1                     | 1.48                | 1/2                | 1                    | 17.61                          | 30                                    |
| VSH033    | 230/60/1   | 14.4              | 12.9             | 1                     | 1.48                | 1/2                | 1                    | 17.61                          | 30                                    |
|           | 460/60/3   | 5.5               | 4.2              | 1                     | 1.29                | 1/2                | 1                    | 6.54                           | 15                                    |
|           | 208/60/1   | 15.1              | 13.1             | 1                     | 2.03                | 1                  | 1                    | 18.41                          | 30                                    |
| VSH042    | 230/60/1   | 15.1              | 13.1             | 1                     | 2.03                | 1                  | 1                    | 18.41                          | 30                                    |
|           | 460/60/3   | 6.1               | 4.2              | 1                     | 1.86                | 1                  | 1                    | 7.11                           | 15                                    |
|           | 208/60/1   | 20.5              | 17.8             | 1                     | 2.69                | 1                  | 1                    | 24.94                          | 40                                    |
| VSH050    | 230/60/1   | 20.5              | 17.8             | 1                     | 2.69                | 1                  | 1                    | 24.94                          | 40                                    |
|           | 460/60/3   | 7.5               | 5.0              | 1                     | 2.48                | 1                  | 1                    | 8.73                           | 15                                    |
|           | 208/60/1   | 25.8              | 21.8             | 1                     | 4.03                | 1                  | 1                    | 31.28                          | 50                                    |
| VSH060    | 230/60/1   | 25.8              | 21.8             | 1                     | 4.03                | 1                  | 1                    | 31.28                          | 50                                    |
|           | 460/60/3   | 8.8               | 4.9              | 1                     | 3.84                | 1                  | 1                    | 10.00                          | 15                                    |

Table 32. VSVE electrical data

| Model No. | Unit Volts | Total Unit<br>FLA | Comp RLA<br>(ea) | No. of<br>Compressors | Blower<br>Motor FLA | Blower<br>Motor hp | Fan<br>Motor<br>Num. | Minimum<br>Circuit<br>Ampacity | Maximum Overcurrent Protective Device |
|-----------|------------|-------------------|------------------|-----------------------|---------------------|--------------------|----------------------|--------------------------------|---------------------------------------|
|           | 208/60/1   | 11.3              | 9.2              | 1                     | 2.1                 | 3/4                | 1                    | 13.6                           | 20                                    |
| VSV024    | 230/60/1   | 11.3              | 9.2              | 1                     | 2.1                 | 3/4                | 1                    | 13.6                           | 20                                    |
|           | 460/60/3   | 4.9               | 2.9              | 1                     | 2.0                 | 3/4                | 1                    | 5.6                            | 15                                    |
|           | 208/60/1   | 15.7              | 12.9             | 1                     | 2.8                 | 3/4                | 1                    | 18.9                           | 30                                    |
| VSV033    | 230/60/1   | 15.7              | 12.9             | 1                     | 2.8                 | 3/4                | 1                    | 18.9                           | 30                                    |
|           | 460/60/3   | 6.9               | 4.2              | 1                     | 2.7                 | 3/4                | 1                    | 8.0                            | 15                                    |
|           | 208/60/1   | 17.7              | 13.1             | 1                     | 4.6                 | 1                  | 1                    | 20.9                           | 30                                    |
| VSV042    | 230/60/1   | 17.7              | 13.1             | 1                     | 4.6                 | 1                  | 1                    | 20.9                           | 20                                    |
|           | 460/60/3   | 8.2               | 4.2              | 1                     | 4.0                 | 1                  | 1                    | 9.3                            | 15                                    |
|           | 208/60/1   | 24.8              | 17.8             | 1                     | 7.0                 | 1                  | 1                    | 29.3                           | 45                                    |
| VSV050    | 230/60/1   | 24.8              | 17.8             | 1                     | 7.0                 | 1                  | 1                    | 29.3                           | 45                                    |
|           | 460/60/3   | 11.6              | 5.0              | 1                     | 6.6                 | 1                  | 1                    | 13.25                          | 15                                    |
|           | 208/60/1   | 25.8              | 21.8             | 1                     | 4.03                | 1                  | 1                    | 31.28                          | 50                                    |
| VSV060    | 230/60/1   | 25.8              | 21.8             | 1                     | 4.03                | 1                  | 1                    | 31.28                          | 50                                    |
| İ         | 460/60/3   | 8.8               | 4.9              | 1                     | 3.84                | 1                  | 1                    | 10.00                          | 15                                    |



# Variable-Speed WSHP UC400 Controller

#### I/O Definitions

Hard-wired input/outputs for the variable-speed WSHP UC400 controller are defined in Table 33, p. 34.

Table 33. UC400 hard wired input/output definitions

| Connection type                          | UC400<br>terminal | Variable-speed WSHP configuration                                                                               | Connection specifications (a) | Valid range                                  |
|------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|
|                                          | AI1               | Zone Temp Sensor/Timed Override and Timed Override Cancel                                                       | 10 kΩ Thermistor              | -40-212°F                                    |
|                                          | AI2               | Zone Setpoint                                                                                                   | 0-1000 Ω                      | 40-115°F                                     |
| Analog Inputs                            | AI3               | Fan Mode (Control Auto/Off)<br>AHRI Audit Test Mode Initiate                                                    | 200-100 kΩ                    | Auto/Off<br>Test Mode Active/Inactive        |
|                                          | AI4               | Heat Sink Temperature Sensor 10 kΩ Thermistor -4                                                                |                               | -40-212°F                                    |
|                                          | AI5               | Entering Water Temperature Sensor 10 kΩ Thermistor                                                              |                               | -40-212°F                                    |
| Universal Inputs                         | UI1               | Relative Humidity Sensor                                                                                        | 4–20 mA                       | 0-100%RH                                     |
|                                          | UI2               | Leaving Water Temperature                                                                                       | 10 kΩ Thermistor              | -40-212°F                                    |
|                                          | BI1               | Local Occupancy                                                                                                 |                               | Normally Open<br>Occ./Unocc                  |
| Binary Inputs                            | BI2               | Condensate Overflow                                                                                             | 24 Vac detect                 | Normally Closed<br>Okay/Failed               |
| BIS                                      | BI3               | Compressor Protection Status – Discharge<br>Line Thermostat/Low/High Pressure Cut Out/<br>Overload Relay Status |                               | Normally Closed<br>Okay/Failed               |
|                                          | BO1               | Supply Fan On/Off Control                                                                                       |                               | Energized/De-Energized                       |
| Binary Outputs<br>(Relay) <sup>(b)</sup> | BO2               | Isolation Valve                                                                                                 | 2.88 A @24 Vac pilot duty     | Energized/De-Energized                       |
| ()                                       | ВО3               | Compressor 1                                                                                                    |                               | Energized/De-Energized                       |
|                                          | BO4               | NA                                                                                                              |                               | Energized/De-Energized                       |
|                                          | BO5               | NA                                                                                                              |                               | Energized/De-Energized                       |
| Binary Outputs                           | BO6               | NA                                                                                                              | 0.5 A max @24-277 Vac,        | Energized/De-Energized                       |
| (Triac) <sup>(c)</sup>                   | ВО7               | Reversing Valve                                                                                                 | resistive and pilot duty      | Energized/De-Energized                       |
|                                          | BO8               | NA                                                                                                              |                               | Energized/De-Energized                       |
|                                          | BO9               | NA                                                                                                              |                               | Energized/De-Energized                       |
| Analog Outputs/                          | AO1/ BI4          | Supply Fan Motor Control Signal                                                                                 | PWM Output: 80Hz              | 0-100% Duty Cycle                            |
| Binary Inputs                            | AO2/ BI5          | Variable Speed Compressor Control Signal                                                                        | 0-10Vdc                       | 0-100% Compressor Output                     |
|                                          | IMC +             | NA                                                                                                              | Comm.                         | NA                                           |
| Communication                            | IMC -             | NA                                                                                                              | Comm.                         | NA                                           |
| 337 THAIRICATION                         | LINK +            | BACnet Comm. +                                                                                                  | Comm.                         | NA                                           |
|                                          | LINK -            | BACnet Comm                                                                                                     | Comm.                         | NA                                           |
| Pressure Inputs                          | PI1               | Test Mode Input                                                                                                 | 3-Wire: +5Vdc, Signal,<br>Gnd | OVdc/5Vdc<br>(Normal/Test Mode Active)       |
| Pressure inputs                          | PI2               | Feedback from Compressor VFD                                                                                    | 3-Wire: +5Vdc, Signal,<br>Gnd | 0Vdc/5Vdc<br>(Okay/Drive Disabled or Failed) |

<sup>(</sup>a) For more information on the UC400 connection specifications, refer to the UC400 installation sheet; Literature Order Number X39641064-01. (b) For Triac output control, 24VAC will be supplied to the Triac Supply input to be used for the Triac outputs.

<sup>(</sup>c) 24 Vac will be connected to the binary outputs and the UC400 will provide a contact closure for output control.



### **UC400 Setpoints and Setup Parameters**

The setpoints shown in Table 34, p. 35 are available for modification through the Tracer TU Field Service Tool if changes from the factory default values are required.

Table 34. UC400 setpoints

| Input Name                         | Selections                     | Default      |
|------------------------------------|--------------------------------|--------------|
| Default Setpoints                  | •                              |              |
| Space Temperature Setpoint Source  | BAS<br>Local Source<br>Default | Local Source |
| Unoccupied Cooling Setpoint        | 40°F to 115°F                  | 85°F         |
| Unoccupied Heating Setpoint        | 40°F to 115°F                  | 60°F         |
| Occupied Offset                    | 0.9°F to 18°F                  | 1.5°F        |
| Standby Offset                     | 0.9°F to 18°F                  | 7.5°F        |
| Space Temperature Setpoint Default | 40 to 115°F                    | 72.5°F       |
| Setpoint Limits                    |                                |              |
| Cooling Setpoint High Limit        | 40 to 115°F                    | 110°F        |
| Cooling Setpoint Low Limit         | 40 to 115°F                    | 40°F         |
| Heating Setpoint High Limit        | 40 to 115°F                    | 105°F        |
| Heating Setpoint Low Limit         | 40 to 115°F                    | 40°F         |
| Humidity Setpoint                  | 40–100%                        | 60%          |

The setup parameters shown in Table 35, p. 35 are available for modification through the TracerTU Field Service Tool if changes are required

**Note:** Table 35, p. 35 indicates only product-specific setup parameters and does not include standard TracerTU parameters (for example, units of measure).

Table 35. UC400 setup parameters

| Local Source/BAS                                | Local Source                                                                                                                                                                                                             |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Local Source/BAS                                | Local Source                                                                                                                                                                                                             |
| ·                                               |                                                                                                                                                                                                                          |
| Continuous <sup>(a)</sup> Cycling with capacity | Continuous                                                                                                                                                                                                               |
| Enable/Disable                                  | Enable                                                                                                                                                                                                                   |
| 33-100% <sup>(b)</sup>                          | 33%                                                                                                                                                                                                                      |
| 75-110%                                         | 100%                                                                                                                                                                                                                     |
| Enable/Disable                                  | Enable                                                                                                                                                                                                                   |
| oint 0-10000 hours 600 hrs.                     |                                                                                                                                                                                                                          |
| •                                               |                                                                                                                                                                                                                          |
| 0-240 minutes                                   | 120 minutes                                                                                                                                                                                                              |
| •                                               | •                                                                                                                                                                                                                        |
| 40-100%                                         | 60%                                                                                                                                                                                                                      |
|                                                 | Local Source/BAS  Local Source/BAS  Local Source/BAS  Local Source/BAS  Local Source/BAS  Continuous <sup>(a)</sup> Cycling with capacity  Enable/Disable  33-100% <sup>(b)</sup> 75-110%  Enable/Disable  0-10000 hours |

<sup>(</sup>a) Fan will cycle when unoccupied

<sup>(</sup>b) The Minimum Supply Fan Speed percent is dependent upon the Maximum Supply Fan Speed PWM percent. The Maximum Supply Fan Speed percent is based on the user selected maximum and is the highest fan speed the unit will run: 100% Cool output.(c) The occupied bypass timer is used for timed override applications.



# **Sequence of Operation**

During normal operation, the compressor and supply fan outputs modulate to maintain the space temperature at the user-selected space temperature setpoint(s). Functions other than heating and cooling that are controlled by the variable-speed WSHP UC400 controller are described in this section.

#### Random Start Timer

At power-up, the UC400 controller will generate a random timer (unique to each controller) from 5–30 seconds. During this time period, all unit functionality will be held off until the timer expires.

#### **Maintenance Timer**

The UC400 controller will compare the amount of fan run time against an adjustable Filter Runtime Hours Setpoint (stored in the controller) to determine when maintenance is recommended for the unit (check the filter status and other routine maintenance items as necessary). The Filter Runtime Hours Setpoint can be user-edited as required through the Tracer TU service tool. The valid range for the Filter Runtime Hours Setpoint is 0 to 10000 hours and the default value is 600 hours. If the user selects a setpoint of 0, the Filter Change Required diagnostic is disabled.

Once the Filter Runtime Hours Setpoint has been exceeded, the controller generates a Filter Change Required diagnostic. The user will be notified of this diagnostic in building automation system applications or through Tracer TU.

The Filter Change Required diagnostic is cleared whenever a FilterTimer reset request is communicated to the controller and the fan run hours has exceeded the fan run hours limit. At that point, the fan run time is reset (to zero) and the process starts over.

### **Setpoint Arbitration**

Variable-speed WSHP units will require traditional Zone Heating and Cooling Setpoints, as well as a humidity setpoint for the dehumidification feature. These setpoints will be available locally through the UC400 or may be provided from a BAS.

The UC400 has provisions for a local Zone Setpoint input with a range of 50-85°F which will be used in conjunction with the Occupied and Standby Offsets (Default 1.5°F and 7.5°F, respectively). The Local Occupied Zone Setpoints will be calculated as follows depending on the Occupancy Status of the unit:

Cooling Setpoint = SpaceTemp Setpoint Default + (Occupied Offset or Standby Offset)

Heating Setpoint = Space Temp Setpoint Default— (Occupied Offset or Standby Offset) For Unoccupied Zone Setpoints, the UC400 has default values for Heating and Cooling and they are adjustable through Tracer TU. The Default Dehumidification setpoint will also only be adjustable through Tracer TU or through a BAS.

When multiple setpoint sources are available (local and BAS), the controller will use the following logic for determining which setpoint should be used for active control:

- If a valid communicated setpoint value is present, the communicated value will be used for control.
- If a valid communicated setpoint value is not present but a valid hard-wired setpoint value is present, the hard-wired value will be used for control.
- If neither valid communicated or hard-wired setpoint values are present, the controller will use the default setpoints.

### **Sensor Arbitration**

The following sensor values can be provided to the UC400 via hard-wired inputs or through BACnet communication. The controller will use a valid communicated value for unit control, regardless of the status of the hard-wired input.

- Space Temperature
- Entering Water Temperature
- Space Humidity

### **Occupancy Determination**

The following standard occupancy modes and arbitration are supported in the VSPD WSHP UC400:

| MSV<br>occupancy<br>request <sup>(a)</sup> | Local<br>occupancy<br>input | Bypass<br>timer | MSV occupancy status |
|--------------------------------------------|-----------------------------|-----------------|----------------------|
|                                            | Occupied                    | N/A             | Occupied             |
| Occupied                                   | Unoccupied                  | Zero            | Standby              |
|                                            | Orioccupied                 | Not zero        | Bypass               |
|                                            | Occupied                    | N/A             | Occupied             |
| Bypass                                     | Unacquinied                 | Zero            | Standby              |
|                                            | Unoccupied                  | Not zero        | Bypass               |
| Unoccupied                                 | N/A                         | Zero            | Unoccupied           |
| orioccupied                                | IN/A                        | Not zero        | Bypass               |
| Standby                                    | N/A                         | Zero            | Standby              |
| Standby                                    | IN/A                        | Not zero        | Bypass               |
|                                            | Occupied                    | N/A             | Occupied             |
| Auto                                       | Unaccupied                  | Zero            | Unoccupied           |
|                                            | Unoccupied                  | Not zero        | Bypass               |

<sup>(</sup>a) MSV occupancy request is a communicated Occupancy Mode request from a BAS.

#### Occupied mode

When the controller is in Occupied mode, the unit will attempt to maintain the space temperature to the active



occupied heating or cooling setpoint. Occupied mode is the default mode of the UC400 controller.

### **Unoccupied mode**

When the controller is in Unoccupied mode, the unit will attempt to maintain the space temperature at the stored unoccupied Heating or Cooling setpoint (configurable through the BAS or Tracer TU).

### **Occupied Standby mode**

The Occupied Standby mode allows the unit to operate at a heating or cooling setpoint between the occupied and unoccupied setpoints (Space Temperature Setpoint ± Standby Offset) to help maintain the space while decreasing energy consumption. Unit operation in this mode is identical to the occupied mode except for the different heating and cooling setpoints.

### **Occupied Bypass mode**

The Occupied Bypass mode is used to transition the unit from the Unoccupied mode to the Occupied mode for a period of time from 0 to 4 hours (configurable through TracerTU).

The controller can be placed in Occupied Bypass mode by either communicating an occupancy request of bypass or by using the Timed Override (for example, ON) functionality of the controller and applicable zone sensors:

### Timed override operation

While the unit is operating in Unoccupied mode, if the timed override request button on the zone sensor is selected for 0.2 to 5 seconds, the unit will recognize this as a timed override request. This request is always accepted, but will only transition to Occupied Bypass mode if the controller was in Unoccupied mode. Once initiated, the unit will enter Occupied Bypass mode for the duration of the Occupancy BypassTimer (Default 120 minutes) or until the timed override request is cancelled.

While the unit is operating in Occupied Bypass mode, the timed override operation can be cancelled by a timed override cancel request. This request is always accepted, but the unit will transition back to Unoccupied mode only if the unit is currently operating in Occupied Bypass mode.

Some Trane zone sensors have ON and CANCEL buttons for timed override operation. Pressing the ON button on the zone sensor applies a direct short across the space temperature input, as described above, and when the unit is in Unoccupied mode, initiates the Occupied Bypass mode. The CANCEL button applies  $1.5~\mathrm{k}\Omega$  across the space temperature input and is used to return a unit operating in Occupied Bypass mode back into Unoccupied mode before the Occupancy Bypass Timer has expired.

### Supply fan mode operation

Variable-speed WSHP units can be set up to have either Cycling or Continuous fan mode operation. This feature is selectable through Tracer TU or through a BAS as a

communicated value. The default value for the supply fan mode is Continuous.

#### Supply fan mode: Cycling

For active cooling, heating, and enhanced dehumidification operation, the supply fan will be commanded ON and will ramp up to minimum speed once the unit determines that there is a request for cooling or heating operation. Once the control determines that there is no longer a capacity request, and the compressor output is OFF, the supply fan will be de-energized once any Supply Fan Off delays have timed out. During the Supply Fan Off Delay, the supply fan will remain energized for the predetermined time at the previous unit function's minimum speed.

**Note:** During heating only, there will be a 30 second Supply Fan Off delay.

### Supply fan mode: ON

For active unit control with the supply fan mode set to Continuous, the unit will energize the supply fan and hold the fan speed output at the active minimum speed until there is a request for the fan speed to increase. This will hold true for all cases except during Unoccupied periods in which the Supply Fan Mode is forced to operate in Cycling mode.

#### Zone sensor fan switch

The controller supports a fan switch selection that is selectable by an applicable zone sensor module. When the fan switch is set to AUTO, the unit will utilize the configured supply fan mode (Cycling or Continuous) for supply fan output control and will operate heating, cooling, and dehumidification in order to meet the space demand. When the fan switch is set to OFF, the unit will enter OFF mode. All heating and cooling capacity will be deenergized after the associated minimum on timers expire, the isolation valve will be deenergized, and the supply fan will deenergize once any associated off delay timer has expired; no heating, cooling, or supply fan operation will be allowed when the fan switch is set to OFF.

If required, the user can enable/disable the zone sensor fan switch functionality through BAS or the Tracer TU service tool. A fan mode can also be requested through BAS. If a requested fan mode is requested through BAS, the local setting is ignored.

### **Unit Mode Arbitration**

#### Manual mode determination

Any BAS request for AUTO mode or any other enumeration for the Heat Cool Mode Request object that results in a system mode request of AUTO will result in the unit alternating between Heating and Cooling operation automatically as described in the Auto-Changeover section (p. 38). If unit mode requests for modes other than AUTO are provided through the BAS, arbitration is used to determine the active mode as follows:



### Sequence of Operation

Refer to the Table 36, p. 38 to determine the unit operating mode based on communicated Heat Cool Mode request values:

**Note:** If the local Fan Switch functionality is enabled and the switch selection is set to OFF, the unit will be OFF regardless of the Heat Cool Mode request from the BAS.

Table 36. Unit operating mode based on communicated value

| Heat Cool Mode<br>Request | Effective Unit Mode Operation | Description                                                                                 |
|---------------------------|-------------------------------|---------------------------------------------------------------------------------------------|
| AUTO                      | AUTO                          | Mode determined by active setpoint/sensor values.                                           |
| HEAT                      | HEAT                          | Fan Operation and Heating Operation Allowed; no Cooling or Dehumidification.                |
| MORNING WARMUP            | HEAT                          | Fan Operation and Heating Operation Allowed; no Cooling or Dehumidification.                |
| COOLING                   | COOL                          | Fan Operation, Cooling Operation, Dehumidification Operation Allowed; no Heating Operation. |
| NIGHT PURGE               | AUTO                          | Mode determined by active setpoint/sensor values.                                           |
| PRE-COOL                  | COOL                          | Fan Operation, Cooling Operation, Dehumidification Operation Allowed; no Heating Operation. |
| OFF                       | OFF                           | Fan, Cooling, Heating, and Dehumidification Operation disabled.                             |
| TEST                      | AUTO                          | Mode determined by active setpoint/sensor values.                                           |
| EMERGENCY HEAT            | HEAT                          | Fan Operation and Heating Operation Allowed; no Cooling or Dehumidification.                |
| FAN ONLY                  | FAN ONLY                      | Fan Operation at Maximum Speed only; no Heating or Cooling available.                       |
| FREE COOL                 | AUTO                          | Mode determined by active setpoint/sensor values.                                           |
| ICE-MAKING                | AUTO                          | Mode determined by active setpoint/sensor values.                                           |
| MAX HEAT                  | AUTO                          | Mode determined by active setpoint/sensor values.                                           |
| ECONOMIZING               | AUTO                          | Mode determined by active setpoint/sensor values.                                           |
| DEHUMIDIFY                | AUTO                          | Mode determined by active setpoint/sensor values.                                           |
| CALIBRATE                 | AUTO                          | Mode determined by active setpoint/sensor values.                                           |

#### **Auto-Changeover**

When the Effective Unit Mode is Auto, the following Auto-Changeover rules are used to determine the active unit mode:

At power-up, or after a unit reset, the Active Unit Mode is set to:

- Heat, if the active space temperature < the cooling setpoint</li>
- Cool, if the active zone temperature > the cooling setpoint

If the Active Unit Mode is Cool, the Active Unit Mode is switched to Heat when both of the following conditions are met:

- Active space temperature < the heating setpoint
- There is no longer a request for cooling

If the Active Unit Mode is Heat, the Active Unit Mode is switched to Cool when both of the following conditions are met:

- Active Zone Temperature > cooling setpoint
- · There is no longer a request for Heating

**Note:** Once the controller determines that there is a need to change the active unit mode, the compressor will not energize for the new mode until the compressor minimum off time has been met.

### **Isolation Valve Operation**

For all units, the UC400 supports a two-position water isolation valve without needing any special configuration; by default, the UC400 will control as though isolation valves are present.

### **Isolation Valve "ON" Control**

The isolation valve output will be energized prior to the compressor (controlled open) during active compressor heating, cooling, dehumidification, and when forced open during manual output override testing. The water isolation valve will be driven open during all Heating and Cooling requests, even if the compressor output is not energized, such as during low load conditions when the compressor is operating in the duty cycle routine in order to achieve its minimum capacity. To reduce excessive cycling of the isolation valve, once opened, the isolation valve will remain open for a minimum of 10 minutes.

#### **Entering water temperature (EWT) sampling**

The controller will sample the entering water temperature to determine proper control action for all units that utilize a hard-wired entering water temperature indication. If the entering water temperature is communicated to the controller via a BAS system, then no sampling will be required. When the EWT sampling function is invoked, the isolation valve output will be driven open for 3 minutes and the EWT reading is taken at that time.



EWT sampling will not occur automatically at power up, only when all of the following conditions are met:

- EWT is not communicated via BAS system
- There is a new request for compressor operation.
- · The isolation valve is not OPEN.
- It has been more than an hour since the last time that the isolation valve was opened.

After the 3-minute EWT sampling time period expires, the isolation valve will remain open for compressor operation.

### **Isolation Valve "OFF" Control**

The isolation valve output will be de-energized (controlled closed) when there is no longer a request for compressor operation and the 10 minute minimum on time has expired or the manual output override test has driven it closed.

### **Reversing Valve Operation**

For normal unit operation, the reversing valve output is energized when the unit is in cooling mode and deenergized in heating mode. Under normal operating modes, the reversing valve does not change states until the compressor is energized and reaches its startup speed.

### **Cooling and Heating Operation**

For normal Cooling and Heating operation, the unit cooling or heating capacity will modulate and cycle based on a PI algorithm in order to meet the Active Space Setpoint. The following fan and compressor actions are based on the required unit capacity:

- When no unit capacity is required, the compressor output(s) will be OFF.
- When the required unit capacity is less than the compressor can provide at its minimum speed, the unit will operate in a duty cycle scheme based on a required ON/OFF time in order to meet the space demand.
- When the required unit capacity is greater than the minimum capacity for the unit, the unit will operate the compressor and fan between minimum and maximum capacity in order to meet the space demand.

# Unoccupied Cooling and Heating Operation

The unit will control the ZoneTemperature to the Active Unoccupied Setpoints during Unoccupied periods.

### **Enhanced Dehumidification**

The UC400 controller supports two versions of Enhanced Dehumidification operation. The decision to perform Enhanced Dehumidification is based on the availability of a space relative humidity value as described in this section.

### **Humidity Sensor Value Available**

Variable-speed WSHP units will perform Enhanced Dehumidification only during low cooling load conditions when the unit is performing active Cooling operation and there is a valid Space Humidity value (local or BAS). If the valid Space Humidity is greater than the active Dehumidification Setpoint, the supply fan speed will be modified to increase the dehumidification capability of the unit. If a Space Humidity value is not present at the controller, this version of Enhanced Dehumidification will be disabled.

### **Humidity Sensor Value Unavailable**

If a valid humidity sensor value is not available from the local source or through BAS, there may still be a need to perform some level of dehumidification. In this case, the unit will utilize an indication from the refrigerant heat sink temperature to help determine when to perform a level of dehumidification control.

### **Demand Limit Operation**

The controller supports a communicated request for Demand Limiting operation of the Compressor and Supply Fan outputs. Demand Limiting operates as follows: If the point is placed into the Active state, the unit limits the compressor capacity output to 50% for all unit modes (Cooling, Heating, and Dehumidification). During this period, the supply fan tracks the compressor as normal and is limited by the user-selected Minimum and Maximum Fan Speeds. Demand Limit requests do not override compressor Startup and Shutdown sequences or unit protection modes.



### **Pre-Start Checklist**

Before energizing the unit, the following system devices must be checked:

- Is the high voltage power supply correct and in accordance with the nameplate ratings?
- Is the field wiring and circuit protection the correct size?
- Is the low voltage control circuit wiring correct per the unit wiring diagram?
- Is the piping system clean/complete and correct?
- Is vibration isolation provided? (i.e. unit isolation pad, hose kits)
- Is unit serviceable? See "Clearance Dimensions," p. 7.
- Are the low/high-side pressure temperature caps secure and in place?
- Are all the unit access panels secure and in place?
- Is the water flow established and circulating through all the units?
- Is the duct work correctly sized, run, taped, insulated and weather proofed with proper unit arrangement?
- Is the condensate line properly sized, run, trapped, pitched and primed?
- Is the zone sensor correctly wired and in a good location?
- Does the indoor blower turn freely without rubbing?
- Has all work been done in accordance with applicable local and national codes?
- Has heat transfer fluid been added in the proper mix to prevent freezing in closed system application?



### Start-Up

**Note:** Start-up with the heat pump zone sensor is included below:

- 1. Cooling mode expectations: On the zone sensor, set the fan/system mode switch to the AUTO position.
- Reduce the zone sensor setpoint until the compressor, reversing valve, solenoid valve, and loop pump are energized. Adjust water flow utilizing pressure/ temperature plugs and comparing to tables contained in specification sheet data.

Cool air should blow from the register. Water leaving the heat exchanger should be warmer than the entering water temperature (approximately 9-12°F); blower operation should be smooth; compressor and blower amps should be within data plate ratings; the suction line should be cool with no frost observed on the refrigerant circuit.

- 3. Check the cooling refrigerant pressures against values in Table 39, p. 43.
- 4. Turn the zone sensor fan/system mode switch to the OFF position. Unit should stop running and the reversing valve should de-energize.
- Leave unit off for approximately 5 minutes to allow for pressure equalization.
- 6. Turn the zone sensor setpoint to the highest setting.
- 7. Heating mode expectations: Set the zone system fan/ system mode switch to the AUTO position.
- 8. Wait until the unit energizes the Fan and Compressor for Heating operation. Warm air should blow from the register. A water temperature decrease of approximately 5-9°F leaving the heat exchanger should be noted. The blower and compressor operation should be smooth with no frost observed on the refrigeration circuit.
- 9. Check the heating refrigerant pressures against values in Table 39, p. 43.
- 10. Set the zone sensor setpoint to the appropriate setting according to the application requirements. Note the Occupied Offset selection when determining the desired cooling and heating setpoints.
- 11. Instruct the owner on system operation.

Table 37. Checklist

| MODE                                             | Heat | Cool |  |  |
|--------------------------------------------------|------|------|--|--|
| Entering fluid temperature                       | F    | F    |  |  |
| Leaving fluid temperature                        | F    | F    |  |  |
| Temperature differential                         | F    | F    |  |  |
| Return-air temperature DB/WB                     | F    | F    |  |  |
| Supply-air temperature DB/WB                     | F    | F    |  |  |
| Temperature differential                         | F    | F    |  |  |
| Water coil heat exchanger<br>(Water Pressure IN) | PSIG | PSIG |  |  |

#### Table 37. Checklist

| MODE                                              | Heat | Cool |
|---------------------------------------------------|------|------|
| Water coil heat exchanger<br>(Water Pressure OUT) | PSIG | PSIG |
| Pressure Differential                             | PSIG | PSIG |
| COMPRESSOR                                        |      |      |
| Amps                                              |      |      |
| Volts                                             |      |      |
| Discharge line temperature (after 10 minutes)     | F    | F    |

### **Operating Pressures**

There are many variables (airflow, air temperatures) in an air conditioning system that will affect operating refrigerant pressures and temperatures. The charts below shows approximate conditions and is based on air flow at the rated SCFM, entering air at 80°F(DB), 67°F(WB) in cooling, 68°F(DB) in heating. (+)Heating data with 35°F EWT is based on the use of an anti-freeze solution having a freezing point 20°F lower than the minimum expected entering temperature.

Table 38. Operating pressures in cooling/heating - VSH

|            |                                   |                        | Co                           | oling                           |                            |                             | Heating                       |                                 |                            |                             |
|------------|-----------------------------------|------------------------|------------------------------|---------------------------------|----------------------------|-----------------------------|-------------------------------|---------------------------------|----------------------------|-----------------------------|
| Model No.  | Entering<br>Water<br>Temp<br>(°F) | Water<br>Flow<br>(GPM) | Suction<br>Pressure,<br>PSIG | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp Rise<br>(°F) | Air Temp<br>Drop<br>°F (DB) | Suction<br>Pressure<br>(PSIG) | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp<br>Drop (°F) | Air Temp<br>Rise<br>(°F DB) |
| Wiodel No. | 35                                | 5.0                    |                              | (1310)                          |                            | 1 (00)                      | 84-97                         | 252-321                         | 5-7                        | 15-24                       |
|            | 35                                | 6.2                    | _                            | _                               | _                          |                             | 84-97                         | 253-321                         | 4-6                        | 15-24                       |
|            | 45                                | 5.0                    | 125-144                      | 166-212                         | 12-15                      | 19-25                       | 98-113                        | 266-338                         | 7-8                        | 19-26                       |
|            | 45                                | 6.2                    | 125-144                      | 161-204                         | 10-12                      | 19-25                       | 99-114                        | 267-340                         | 5-7                        | 18-28                       |
|            | 55                                | 5.0                    | 127-146                      | 189-241                         | 12-15                      | 18-24                       | 116-134                       | 281-358                         | 8-10                       | 21-31                       |
|            | 55                                | 6.2                    | 127-146                      | 183-233                         | 9-12                       | 18-24                       | 118-136                       | 282-359                         | 6-8                        | 22-31                       |
|            | 65                                | 5.0                    | 131-151                      | 216-275                         | 11-14                      | 18-24                       | 130-149                       | 291-370                         | 9-11                       | 24-34                       |
| VSH024     | 65                                | 6.2                    | 131-151                      | 210-267                         | 9-12                       | 18-24                       | 132-152                       | 294-374                         | 7-9                        | 25-35                       |
|            | 75                                | 5.0                    | 133-153                      | 250-318                         | 11-14                      | 18-24                       | 150-173                       | 309-394                         | 10-13                      | 28-38                       |
|            | 75                                | 6.2                    | 133-153                      | 243-309                         | 9-11                       | 18-24                       | 154-177                       | 311-396                         | 8-10                       | 28-39                       |
|            | 85                                | 5.0                    | 136-157                      | 287-365                         | 11-14                      | 17-23                       | 173-199                       | 327-416                         | 11-14                      | 31-42                       |
|            | 85                                | 6.2                    | 136-156                      | 279-355                         | 9-11                       | 17-23                       | 178-205                       | 331-422                         | 9-12                       | 32-43                       |
|            | 95                                | 5.0                    | 138-159                      | 327-416                         | 11-13                      | 17-23                       | 170-203                       | 331-422                         | 7-12                       | 32-43                       |
|            | 95                                | 6.2                    | 138-159                      | 319-406                         | 9-11                       | 17-23                       |                               | _                               |                            | _                           |
|            | 35                                | 6.9                    | -                            | 317 400                         | _                          | 17 23                       | 80-92                         | 259-330                         | 5-7                        | 16-24                       |
|            | 35                                | 8.6                    | _                            | _                               |                            | _                           | 80-93                         | 259-330                         | 4-5                        | 16-25                       |
|            | 45                                | 6.9                    | 124-142                      | 172-219                         | 11-15                      | 19-25                       | 96-110                        | 271-345                         | 6-8                        | 20-27                       |
|            | 45                                | 8.6                    | 123-142                      | 166-211                         | 9-12                       | 19-25                       | 97-111                        | 272-346                         | 5-6                        | 19-28                       |
|            | 55                                | 6.9                    | 124-142                      | 194-247                         | 11-15                      | 19-24                       | 114-131                       | 287-365                         | 7-9                        | 22-31                       |
|            | 55                                | 8.6                    | 124-142                      | 188-239                         | 9-12                       | 19-24                       | 115-133                       | 289-368                         | 6-7                        | 22-32                       |
|            | 65                                | 6.9                    | 125-144                      | 221-281                         | 11-14                      | 18-24                       | 126-145                       | 302-384                         | 8-10                       | 25-35                       |
| VSH033     | 65                                | 8.6                    | 125-144                      | 214-273                         | 9-12                       | 18-24                       | 128-148                       | 304-386                         | 7-9                        | 25-35                       |
|            | 75                                | 6.9                    | 127-146                      | 255-324                         | 11-14                      | 18-24                       | 147-169                       | 321-408                         | 9-12                       | 28-39                       |
|            | 75                                | 8.6                    | 127-146                      | 248-315                         | 9-11                       | 18-24                       | 150-173                       | 323-411                         | 8-10                       | 29-39                       |
|            | 85                                | 6.9                    | 129-148                      | 292-371                         | 11-14                      | 17-23                       | 169-195                       | 342-436                         | 11-13                      | 32-43                       |
|            | 85                                | 8.6                    | 128-148                      | 284-362                         | 9-11                       | 17-23                       | 174-200                       | 345-439                         | 9-11                       | 33-44                       |
|            | 95                                | 6.9                    | 131-150                      | 332-423                         | 11-13                      | 17-23                       | _                             | _                               |                            | _                           |
|            | 95                                | 8.6                    | 130-150                      | 325-413                         | 9-11                       | 17-23                       | _                             | _                               | _                          | _                           |
|            | 35                                | 8.4                    | _                            | _                               | _                          | _                           | 81-93                         | 249-317                         | 6-7                        | 15-23                       |
|            | 35                                | 10.5                   | _                            | _                               | _                          | _                           | 82-95                         | 251-319                         | 5-6                        | 14-24                       |
|            | 45                                | 8.4                    | 109-125                      | 160-203                         | 12-15                      | 17-23                       | 96-111                        | 259-329                         | 7-9                        | 18-26                       |
|            | 45                                | 10.5                   | 109-125                      | 154-196                         | 10-12                      | 17-23                       | 98-113                        | 261-333                         | 5-7                        | 18-27                       |
|            | 55                                | 8.4                    | 126-145                      | 185-236                         | 12-15                      | 17-23                       | 112-129                       | 271-345                         | 8-10                       | 20-30                       |
|            | 55                                | 10.5                   | 126-145                      | 179-228                         | 9-12                       | 17-23                       | 115-132                       | 272-347                         | 6-8                        | 21-30                       |
|            | 65                                | 8.4                    | 133-153                      | 215-273                         | 11-15                      | 18-24                       | 130-150                       | 282-359                         | 9-11                       | 23-33                       |
| VSV042     | 65                                | 10.5                   | 133-153                      | 208-264                         | 9-12                       | 18-24                       | 133-154                       | 285-363                         | 7-9                        | 24-34                       |
|            | 75                                | 8.4                    | 134-155                      | 248-315                         | 11-14                      | 18-24                       | 151-174                       | 298-379                         | 10-13                      | 26-36                       |
|            | 75                                | 10.5                   | 134-154                      | 240-306                         | 9-11                       | 18-24                       | 156-179                       | 302-384                         | 8-11                       | 27-37                       |
|            | 85                                | 8.4                    | 137-158                      | 283-361                         | 11-14                      | 17-23                       | 175-201                       | 316-402                         | 11-14                      | 29-40                       |
|            | 85                                | 10.5                   | 137-158                      | 276-351                         | 9-11                       | 17-23                       | 180-208                       | 320-407                         | 9-12                       | 30-41                       |
|            | 95                                | 8.4                    | 139-160                      | 323-411                         | 11-13                      | 16-22                       | _                             | _                               |                            | _                           |
|            | 95                                | 10.5                   | 139-160                      | 316-402                         | 8-11                       | 17-23                       | _                             | _                               | _                          | _                           |
|            | 35                                | 10.2                   | -                            | _                               | _                          | _                           | 80-92                         | 255-324                         | 6-7                        | 16-25                       |
| VSH050     | 35                                | 12.7                   | <del> </del>                 | _                               | _                          | _                           | 81-94                         | 256-326                         | 5-6                        | 16-26                       |
|            | 45                                | 10.2                   | 126-145                      | 164-208                         | 12-15                      | 15-21                       | 94-108                        | 265-337                         | 7-9                        | 20-27                       |

continued on next page

Table 38. Operating pressures in cooling/heating - VSH (continued)

|           |                                   |                        | Cod                          | oling                           |                            |                             |                               | Hea                             | ting                       |                             |
|-----------|-----------------------------------|------------------------|------------------------------|---------------------------------|----------------------------|-----------------------------|-------------------------------|---------------------------------|----------------------------|-----------------------------|
| Model No. | Entering<br>Water<br>Temp<br>(°F) | Water<br>Flow<br>(GPM) | Suction<br>Pressure,<br>PSIG | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp Rise<br>(°F) | Air Temp<br>Drop<br>°F (DB) | Suction<br>Pressure<br>(PSIG) | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp<br>Drop (°F) | Air Temp<br>Rise<br>(°F DB) |
|           | 45                                | 12.7                   | 126-145                      | 159-202                         | 9-12                       | 15-21                       | 96-110                        | 267-340                         | 6-7                        | 19-29                       |
|           | 55                                | 10.2                   | 128-147                      | 188-240                         | 11-15                      | 17-23                       | 108-124                       | 277-353                         | 8-10                       | 22-32                       |
|           | 55                                | 12.7                   | 128-147                      | 182-232                         | 9-12                       | 17-23                       | 113-130                       | 281-358                         | 6-8                        | 22-32                       |
|           | 65                                | 10.2                   | 129-148                      | 216-276                         | 11-14                      | 18-24                       | 123-142                       | 292-371                         | 9-11                       | 25-35                       |
|           | 65                                | 12.7                   | 129-148                      | 210-267                         | 9-12                       | 18-24                       | 126-146                       | 295-375                         | 7-9                        | 25-36                       |
| VSH050    | 75                                | 10.2                   | 131-150                      | 250-318                         | 11-14                      | 18-24                       | 144-165                       | 309-393                         | 10-13                      | 28-38                       |
|           | 75                                | 12.7                   | 130-150                      | 243-309                         | 9-11                       | 18-24                       | 148-170                       | 313-399                         | 8-10                       | 29-39                       |
|           | 85                                | 10.2                   | 133-153                      | 285-363                         | 11-14                      | 17-23                       | 167-192                       | 328-417                         | 11-14                      | 31-42                       |
|           | 85                                | 12.7                   | 133-153                      | 278-354                         | 9-11                       | 17-23                       | 172-198                       | 332-423                         | 9-12                       | 32-43                       |
|           | 95                                | 10.2                   | 135-155                      | 325-413                         | 11-14                      | 17-23                       | _                             | _                               | _                          | _                           |
|           | 95                                | 12.7                   | 135-155                      | 317-404                         | 9-11                       | 17-23                       | _                             | _                               | _                          | _                           |
|           | 35                                | 12.5                   | _                            | _                               | _                          | _                           | 82-95                         | 271-345                         | 6-7                        | 19-28                       |
|           | 35                                | 15.6                   | _                            | _                               | _                          |                             | 83-96                         | 274-348                         | 5-6                        | 19-29                       |
|           | 45                                | 12.5                   | 121-140                      | 152-194                         | 12-15                      | 18-24                       | 94-108                        | 286-364                         | 7-9                        | 23-31                       |
|           | 45                                | 15.6                   | 122-140                      | 147-187                         | 10-12                      | 18-24                       | 96-110                        | 289-368                         | 6-7                        | 23-32                       |
|           | 55                                | 12.5                   | 121-139                      | 190-241                         | 11-15                      | 18-24                       | 111-128                       | 306-389                         | 8-10                       | 25-35                       |
|           | 55                                | 15.6                   | 118-135                      | 183-233                         | 9-12                       | 18-24                       | 114-131                       | 308-392                         | 7-8                        | 26-36                       |
| VSH060    | 65                                | 12.5                   | 119-137                      | 221-282                         | 11-14                      | 18-24                       | 124-142                       | 322-409                         | 9-11                       | 29-39                       |
| V311000   | 65                                | 15.6                   | 119-137                      | 215-273                         | 9-11                       | 18-24                       | 127-147                       | 327-416                         | 7-9                        | 30-40                       |
|           | 75                                | 12.5                   | 121-139                      | 255-324                         | 11-14                      | 18-24                       | 144-166                       | 346-440                         | 10-13                      | 33-43                       |
|           | 75                                | 15.6                   | 121-139                      | 248-315                         | 9-11                       | 18-24                       | 149-171                       | 350-445                         | 8-11                       | 33-44                       |
|           | 85                                | 12.5                   | 128-147                      | 289-368                         | 11-14                      | 18-24                       | 167-192                       | 369-470                         | 11-14                      | 37-48                       |
|           | 85                                | 15.6                   | 127-147                      | 282-359                         | 9-11                       | 18-24                       | 173-199                       | 376-478                         | 9-12                       | 38-49                       |
|           | 95                                | 12.5                   | 130-149                      | 329-419                         | 11-14                      | 18-24                       | _                             | _                               | _                          | _                           |
|           | 95                                | 15.6                   | 129-149                      | 322-409                         | 9-11                       | 18-24                       |                               | _                               | _                          | _                           |

Table 39. Operating pressures in cooling/heating - VSV

|           |                                   |                        | Co                           | oling                           |                            |                             |                               | Hea                             | ting                       |                             |
|-----------|-----------------------------------|------------------------|------------------------------|---------------------------------|----------------------------|-----------------------------|-------------------------------|---------------------------------|----------------------------|-----------------------------|
| Model No. | Entering<br>Water<br>Temp<br>(°F) | Water<br>Flow<br>(GPM) | Suction<br>Pressure,<br>PSIG | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp Rise<br>(°F) | Air Temp<br>Drop<br>°F (DB) | Suction<br>Pressure<br>(PSIG) | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp<br>Drop (°F) | Air Temp<br>Rise<br>(°F DB) |
|           | 35                                | _                      | _                            | _                               | _                          | _                           | 83-95                         | 258-328                         | 5-6                        | 14-23                       |
|           | 35                                | _                      | _                            | _                               | _                          | _                           | 85-98                         | 259-330                         | 4-5                        | 15-24                       |
|           | 45                                | 5.0                    | 125-144                      | 154-196                         | 11-15                      | 18-24                       | 98-113                        | 275-350                         | 6-8                        | 18-27                       |
|           | 45                                | 6.2                    | 124-143                      | 148-189                         | 9-12                       | 19-24                       | 100-115                       | 277-352                         | 5-7                        | 18-28                       |
|           | 55                                | 5.0                    | 128-147                      | 180-229                         | 11-14                      | 18-24                       | 114-131                       | 288-366                         | 7-9                        | 21-30                       |
|           | 55                                | 6.2                    | 128-147                      | 174-222                         | 9-12                       | 18-24                       | 117-134                       | 290-369                         | 6-8                        | 21-31                       |
| VSV024    | 65                                | 5.0                    | 132-152                      | 209-266                         | 11-14                      | 18-24                       | 129-148                       | 304-387                         | 8-11                       | 24-34                       |
|           | 65                                | 6.2                    | 132-151                      | 203-258                         | 9-11                       | 19-24                       | 133-153                       | 308-391                         | 7-9                        | 24-34                       |
|           | 75                                | 5.0                    | 134-154                      | 241-307                         | 11-14                      | 18-24                       | 148-170                       | 321-408                         | 10-12                      | 27-37                       |
|           | 75                                | 6.2                    | 133-153                      | 235-299                         | 9-11                       | 18-24                       | 153-176                       | 325-414                         | 8-10                       | 28-38                       |
|           | 85                                | 5.0                    | 136-156                      | 277-352                         | 11-13                      | 17-23                       | 169-194                       | 341-433                         | 11-14                      | 31-41                       |
|           | 85                                | 6.2                    | 136-156                      | 270-344                         | 9-11                       | 18-23                       | 175-201                       | 346-441                         | 9-11                       | 32-42                       |
|           | 95                                | 5.0                    | 138-159                      | 316-402                         | 10-13                      | 17-23                       | _                             | _                               | _                          | _                           |

continued on next page

Table 39. Operating pressures in cooling/heating - VSV (continued)

|           |                                   | Cooling                |                              |                                 |                            |                             |                               | Heating                         |                            |                             |  |
|-----------|-----------------------------------|------------------------|------------------------------|---------------------------------|----------------------------|-----------------------------|-------------------------------|---------------------------------|----------------------------|-----------------------------|--|
| Model No. | Entering<br>Water<br>Temp<br>(°F) | Water<br>Flow<br>(GPM) | Suction<br>Pressure,<br>PSIG | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp Rise<br>(°F) | Air Temp<br>Drop<br>°F (DB) | Suction<br>Pressure<br>(PSIG) | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp<br>Drop (°F) | Air Temp<br>Rise<br>(°F DB) |  |
| VSV024    | 95                                | 6.2                    | 138-158                      | 309-394                         | 8-11                       | 17-23                       | _                             | _                               | _                          | _                           |  |
|           | 35                                | _                      | <u> </u>                     | _                               | _                          | _                           | 79-91                         | 267-339                         | 5-7                        | 15-24                       |  |
|           | 35                                | _                      | _                            | _                               | _                          | _                           | 81-94                         | 268-341                         | 4-5                        | 16-25                       |  |
|           | 45                                | 6.6                    | 116-133                      | 159-202                         | 12-15                      | 22-20                       | 94-108                        | 283-360                         | 6-8                        | 19-28                       |  |
|           | 45                                | 8.3                    | 115-133                      | 154-196                         | 9-12                       | 18-24                       | 96-110                        | 285-363                         | 5-7                        | 19-28                       |  |
|           | 55                                | 6.6                    | 120-138                      | 186-236                         | 12-15                      | 18-24                       | 110-126                       | 297-378                         | 7-9                        | 22-31                       |  |
|           | 55                                | 8.3                    | 120-138                      | 180-229                         | 9-12                       | 18-24                       | 113-130                       | 300-381                         | 6-8                        | 22-32                       |  |
|           | 65                                | 6.6                    | 124-143                      | 214-273                         | 12-15                      | 18-24                       | 126-145                       | 317-404                         | 8-11                       | 25-35                       |  |
| VSV033    | 65                                | 8.3                    | 124-143                      | 208-265                         | 9-12                       | 18-24                       | 130-150                       | 321-409                         | 7-9                        | 26-36                       |  |
|           | 75                                | 6.6                    | 126-145                      | 247-314                         | 11-14                      | 18-24                       | 146-168                       | 337-429                         | 10-12                      | 28-39                       |  |
|           | 75                                | 8.3                    | 126-145                      | 241-306                         | 9-11                       | 18-24                       | 151-173                       | 342-435                         | 8-10                       | 29-40                       |  |
|           | 85                                | 6.6                    | 129-149                      | 282-359                         | 11-14                      | 17-23                       | 167-192                       | 359-457                         | 11-14                      | 32-43                       |  |
|           | 85                                | 8.3                    | 129-149                      | 276-351                         | 9-11                       | 18-24                       | 173-199                       | 365-465                         | 9-11                       | 33-44                       |  |
|           | 95                                | 6.6                    | 132-151                      | 322-409                         | 11-14                      | 17-23                       | _                             | _                               | _                          | _                           |  |
|           | 95                                | 8.3                    | 131-151                      | 315-401                         | 9-11                       | 17-23                       | _                             | _                               | _                          | _                           |  |
|           | 35                                |                        | _                            | _                               | _                          | _                           | 83-95                         | 260-330                         | 5-7                        | 14-23                       |  |
|           | 35                                | _                      | _                            | _                               | _                          | _                           | 84-97                         | 261-332                         | 4-5                        | 15-23                       |  |
|           | 45                                | 8.7                    | 126-144                      | 154-196                         | 12-15                      | 19-25                       | 98-112                        | 276-352                         | 7-8                        | 18-27                       |  |
|           | 45                                | 10.9                   | 125-144                      | 149-189                         | 10-12                      | 19-25                       | 100-115                       | 278-354                         | 5-7                        | 18-28                       |  |
|           | 55                                | 8.7                    | 129-148                      | 180-230                         | 12-15                      | 19-25                       | 115-133                       | 291-371                         | 8-10                       | 21-31                       |  |
|           | 55                                | 10.9                   | 128-148                      | 175-223                         | 9-12                       | 19-25                       | 118-136                       | 293-373                         | 6-8                        | 22-31                       |  |
|           | 65                                | 8.7                    | 133-153                      | 210-267                         | 11-14                      | 19-24                       | 131-151                       | 309-394                         | 9-11                       | 24-34                       |  |
| VSV042    | 65                                | 10.9                   | 133-152                      | 204-260                         | 9-12                       | 19-25                       | 135-155                       | 313-398                         | 7-9                        | 25-35                       |  |
|           | 75                                | 8.7                    | 134-155                      | 242-308                         | 11-14                      | 18-24                       | 150-172                       | 326-415                         | 10-13                      | 28-38                       |  |
|           | 75                                | 10.9                   | 134-154                      | 236-300                         | 9-11                       | 18-24                       | 155-178                       | 331-421                         | 8-11                       | 28-39                       |  |
|           | 85                                | 8.7                    | 137-158                      | 277-352                         | 11-14                      | 18-24                       | 170-196                       | 346-441                         | 11-14                      | 31-42                       |  |
|           | 85                                | 10.9                   | 137-157                      | 270-344                         | 9-11                       | 18-24                       | 176-203                       | 352-448                         | 9-12                       | 32-43                       |  |
|           | 95                                | 8.7                    | 139-160                      | 315-401                         | 11-14                      | 17-23                       | _                             | _                               |                            | _                           |  |
|           | 95                                | 10.9                   | 139-160                      | 309-393                         | 9-11                       | 17-23                       |                               | _                               | _                          | _                           |  |
|           | 35                                |                        | _                            | _                               | _                          | _                           | 81-93                         | 273-348                         | 6-7                        | 16-25                       |  |
|           | 35                                | _                      | _                            | _                               | _                          | _                           | 83-95                         | 275-350                         | 5-6                        | 17-26                       |  |
|           | 45                                | 10.4                   | 117-134                      | 154-196                         | 11-15                      | 18-24                       | 95-109                        | 294-375                         | 7-9                        | 20-30                       |  |
|           | 45                                | 13.0                   | 117-134                      | 151-192                         | 9-12                       | 18-24                       | 98-112                        | 296-377                         | 6-7                        | 21-30                       |  |
|           | 55                                | 10.4                   | 122-140                      | 182-231                         | 11-15                      | 18-24                       | 111-127                       | 309-394                         | 8-10                       | 23-33                       |  |
|           | 55                                | 13.0                   | 121-140                      | 177-225                         | 9-12                       | 18-24                       | 114-131                       | 313-398                         | 6-8                        | 24-34                       |  |
|           | 65                                | 10.4                   | 128-147                      | 211-268                         | 11-14                      | 18-24                       | 126-145                       | 330-420                         | 9-12                       | 27-37                       |  |
| VSV050    | 65                                | 13.0                   | 128-147                      | 205-261                         | 9-12                       | 19-24                       | 130-150                       | 334-426                         | 7-10                       | 28-38                       |  |
|           | 75                                | 10.4                   | 130-149                      | 243-309                         | 11-14                      | 18-24                       | 145-167                       | 351-446                         | 10-13                      | 31-41                       |  |
|           | 75                                | 13.0                   | 129-149                      | 237-302                         | 9-11                       | 18-24                       | 151-173                       | 357-454                         | 9-11                       | 32-42                       |  |
|           | 85                                | 10.4                   | 132-152                      | 278-354                         | 11-14                      | 18-24                       | 167-192                       | 375-477                         | 12-15                      | 35-46                       |  |
|           | 85                                | 13.0                   | 132-152                      | 272-346                         | 9-11                       | 18-24                       | 173-199                       | 383-487                         | 10-12                      | 36-47                       |  |
|           | 95                                | 10.4                   | 134-154                      | 317-403                         | 11-13                      | 17-23                       | —                             | _                               | —                          | —<br>—                      |  |
|           | 95                                | 13.0                   | 134-154                      | 311-395                         | 9-11                       | 17-23                       |                               |                                 |                            |                             |  |
|           | 35                                | 12.5                   |                              | J11-373                         | 7=11                       |                             | <br>78-90                     | 260-331                         | 6-7                        | —<br>19-27                  |  |
| VSV060    | 33                                | 12.5                   | _                            |                                 |                            | _                           | 10-70                         | 200-331                         | 0-7                        | 17-21                       |  |

continued on next page

Table 39. Operating pressures in cooling/heating - VSV (continued)

|           | Cooling                           |                        |                              |                                 |                            |                             |                               | Hea                             | ting                       |                             |
|-----------|-----------------------------------|------------------------|------------------------------|---------------------------------|----------------------------|-----------------------------|-------------------------------|---------------------------------|----------------------------|-----------------------------|
| Model No. | Entering<br>Water<br>Temp<br>(°F) | Water<br>Flow<br>(GPM) | Suction<br>Pressure,<br>PSIG | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp Rise<br>(°F) | Air Temp<br>Drop<br>°F (DB) | Suction<br>Pressure<br>(PSIG) | Discharge<br>Pressure<br>(PSIG) | Water<br>Temp<br>Drop (°F) | Air Temp<br>Rise<br>(°F DB) |
|           | 45                                | 12.5                   | 119-137                      | 158-201                         | 12-15                      | 16-22                       | 94-108                        | 277-353                         | 7-9                        | 23-30                       |
|           | 45                                | 15.6                   | 116-133                      | 153-194                         | 9-12                       | 16-22                       | 97-111                        | 279-355                         | 6-7                        | 22-32                       |
|           | 55                                | 12.5                   | 125-144                      | 190-242                         | 12-15                      | 20-26                       | 111-128                       | 296-377                         | 8-10                       | 25-35                       |
|           | 55                                | 15.6                   | 122-140                      | 184-234                         | 9-12                       | 20-26                       | 115-132                       | 299-380                         | 7-8                        | 26-36                       |
|           | 65                                | 12.5                   | 127-147                      | 220-280                         | 12-15                      | 20-25                       | 131-151                       | 311-396                         | 9-12                       | 29-39                       |
| VSV060    | 65                                | 15.6                   | 127-146                      | 213-271                         | 9-12                       | 20-25                       | 135-156                       | 315-401                         | 7-10                       | 30-40                       |
| V3V000    | 75                                | 12.5                   | 129-149                      | 253-322                         | 11-14                      | 19-25                       | 152-175                       | 335-426                         | 10-13                      | 33-44                       |
|           | 75                                | 15.6                   | 129-149                      | 246-313                         | 9-12                       | 19-25                       | 158-181                       | 339-432                         | 8-11                       | 34-45                       |
|           | 85                                | 12.5                   | 133-153                      | 288-367                         | 11-14                      | 19-25                       | 175-202                       | 361-459                         | 12-15                      | 37-48                       |
|           | 85                                | 15.6                   | 133-153                      | 281-357                         | 9-11                       | 19-25                       | 182-210                       | 366-466                         | 10-12                      | 38-50                       |
|           | 95                                | 12.5                   | 135-155                      | 328-417                         | 11-14                      | 18-24                       | _                             | _                               | _                          | _                           |
|           | 95                                | 15.6                   | 135-155                      | 320-407                         | 9-11                       | 18-24                       | _                             | _                               | _                          | _                           |

### **Water Pressure Drop**

Table 42, p. 45 and Table 43, p. 45 should be used to define feet of head/pressure drop. Note that the feet of pressure (ft/head) provided is at ARI/ISO standard.

To calculate feet of head, when using gauges that read in PSIG, multiply PSI by 2.31.

Table 40. Cooling water pressure drops (WPD) in feet of head - VSH

| Model VSH | EWT °F | GPM  | Ft. Pressure |
|-----------|--------|------|--------------|
| VSH024    | 85     | 6.2  | 3.5          |
| VSH033    | 85     | 8.6  | 6.1          |
| VSH042    | 85     | 10.5 | 3.0          |
| VSH050    | 85     | 12.7 | 4.1          |
| VSH060    | 85     | 15.6 | 5.7          |

Table 41. Heating water pressure drops (WPD) in feet of head - VSH

| Model VSH | EWT °F | GPM  | Ft. Pressure |
|-----------|--------|------|--------------|
| VSH024    | 70     | 6.2  | 3.8          |
| VSH033    | 70     | 8.6  | 6.5          |
| VSH042    | 70     | 10.5 | 3.2          |
| VSH050    | 70     | 12.7 | 4.4          |
| VSH060    | 70     | 15.6 | 6.1          |

Table 42. Cooling water pressure drops (WPD) in feet of head - VSV

| EWT °F | GPM                  | Ft. Pressure                           |
|--------|----------------------|----------------------------------------|
| 85     | 6.2                  | 3.7                                    |
| 85     | 8.3                  | 6.2                                    |
| 85     | 10.9                 | 3.1                                    |
| 85     | 13.0                 | 4.2                                    |
| 85     | 15.6                 | 5.1                                    |
|        | 85<br>85<br>85<br>85 | 85 6.2<br>85 8.3<br>85 10.9<br>85 13.0 |

Table 43. Heating water pressure drops (WPD) in feet of head - VSV

| Model VSV | EWT °F | GPM  | Ft. Pressure |
|-----------|--------|------|--------------|
| VSV024    | 70     | 6.2  | 4.0          |
| VSV033    | 70     | 8.3  | 6.7          |
| VSV042    | 70     | 10.9 | 3.5          |
| VSV050    | 70     | 13.0 | 4.7          |
| VSV060    | 70     | 15.6 | 5.4          |

### **Water Volume**

Table 44, p. 45 and Table 45, p. 45 are provided for use in calculating glycol requirements for the unit.

Table 44. Water volume - VSH

| Model VSH                                      | VSH024 | VSH033 | VSH042 | VSH050 | VSH060 |
|------------------------------------------------|--------|--------|--------|--------|--------|
| Internal<br>water<br>volume (in <sup>3</sup> ) | 142.4  | 142.4  | 331.2  | 331.2  | 331.2  |
| Internal<br>water<br>volume (ft <sup>3</sup> ) | 0.082  | 0.082  | 0.192  | 0.192  | 0.192  |
| Internal<br>water<br>volume (gal)              | 0.616  | 0.616  | 1.434  | 1.434  | 1.434  |

Table 45. Water volume - VSV

| Model VSV                                      | VSV024 | VSV033 | VSV042 | VSV050 | VSV060 |
|------------------------------------------------|--------|--------|--------|--------|--------|
| Internal<br>water<br>volume (in <sup>3</sup> ) | 212    | 212    | 414    | 414    | 414    |
| Internal<br>water<br>volume (ft <sup>3</sup> ) | 0.123  | 0.123  | 0.24   | 0.24   | 0.24   |
| Internal<br>water<br>volume (gal)              | 0.918  | 0.918  | 1.792  | 1.792  | 1.792  |



### Maintenance

### **Preventive Maintenance**

Maintenance on the unit is simplified with the following preventive suggestions:

Filter maintenance must be performed to assure proper operation of the equipment. Filters should be inspected at least every three months, and replaced when it is evident they are dirty. Filter sizing is shown in Table 47, p. 46:

Table 46. Filter sizing for disposable filters - VSH

| Size (60 Hz) | Filter Size (Actual)                                                       |  |  |
|--------------|----------------------------------------------------------------------------|--|--|
| VSH 024-033  | 16 inch x 20 inch (406 cm x 508 cm)<br>20 inch x 20 inch (508 cm x 508 cm) |  |  |
| VSH 042-060  | 20 inch x 25 inch (508 cm x 635 cm)<br>20 inch x 30 inch (508 cm x 762 cm) |  |  |

Table 47. Filter sizing for disposable filters - VSV

| Size (60 Hz) | Filter Size (Actual)                           |  |  |
|--------------|------------------------------------------------|--|--|
| VSV 024-033  | 19 7/8 inch x 24 7/8 inch<br>(504 mm x 632 mm) |  |  |
| VSV 042-060  | 27 7/8 inch x 29 7/8 inch<br>(708 mm x 759 mm) |  |  |

### **AWARNING**

### Hazardous Voltage!

Disconnect all electric power, including remote disconnects before servicing. Follow proper lockout/ tagout procedures to ensure the power can not be inadvertently energized. Failure to disconnect power before servicing could result in death or serious injury.

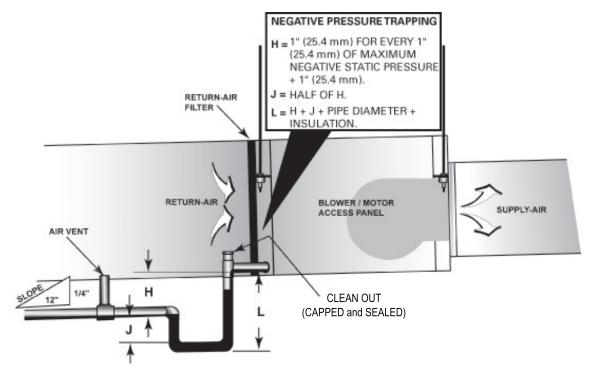
Check the contactors and relays within the control panel at least once a year. It is good practice to check the tightness of the various wiring connections within the control panel.

A strainer (60 mesh or greater) must be used on an open loop system to keep debris from entering the unit heat exchanger and to ensure a clean system.

For units on well water, it is important to check the cleanliness of the water-to-refrigerant heat exchanger. Should it become contaminated with dirt and scaling as a result of bad water, the heat exchanger will have to be back flushed and cleaned with a chemical that will remove the scale. This service should be performed by an experienced service person.

### **NOTICE**

### **Proper Water Treatment Required!**


The use of untreated or improperly treated water in coils could result in scaling, erosion, corrosion, algae or slime. It is recommended that the services of a qualified water treatment specialist be engaged to determine what water treatment, if any, is required. Trane assumes no responsibility for equipment failures which result from untreated or improperly treated water or saline or brackish water.

### **Condensate Trap**

For units incorporating a negative trap design, ensure that the condensate system is primed with water at all times. Allowing a negative, pressure condensate system to run dry could cause a break in the condensate seal allowing the fan to draw water from the condensate line to spray moisture into the mechanical system. By maintaining a primed condensate trap, a seal will be created and will help prevent these complications. The condensate trap must be field installed.

**Note:** When maintenance is performed on this unit, care should be taken not to damage the foil face insulation surfaces. If damage occurs repair damage with foil faced tape.

Figure 23. Negative pressure system





### **Troubleshooting**

### **AWARNING**

### **Hazardous Service Procedures!**

The maintenance and troubleshooting procedures recommended in this section of the manual could result in exposure to electrical, mechanical or other potential safety hazards. Always refer to the safety warnings provided throughout this manual concerning these procedures. When possible, disconnect all electrical power including remote disconnects before servicing.

Follow proper lockout/tagout procedures to ensure the power can not be inadvertently energized. When necessary to work with live electrical components, have a qualified licensed electrician or other individual who has been trained in handling live electrical components per these tasks. Failure to follow all of the recommended safety warnings provided, could result in death or serious injury.

### **General Unit Troubleshooting**

| Problem                                | Heating | Cooling | Cause                                            | Correction                                                    |
|----------------------------------------|---------|---------|--------------------------------------------------|---------------------------------------------------------------|
|                                        | Х       | Х       | Main power off                                   | Check fuses                                                   |
|                                        | Х       | Х       | Defective control transformer                    | Replace                                                       |
| No response to any zone sensor setting | Х       | Х       | Broken or loose connection                       | Repair                                                        |
| Setting                                | Х       | Х       | Defective zone sensor                            | Replace                                                       |
|                                        | Х       | Х       | Transformer                                      | Reset Transformer                                             |
| Unit short cycles                      | Х       | Х       | Zone sensor improperly located                   | Relocate                                                      |
|                                        | Х       | Х       | Supply Voltage too low                           | Correct                                                       |
|                                        | Х       | Х       | Defective windings                               | Replace                                                       |
| Blower runs but compressor does not    | Х       | Х       | Limit switches open                              | Check cause/replace or repair                                 |
|                                        | Х       | Х       | Zones sensor error                               | Check cause/replace or repair                                 |
|                                        | Х       | Х       | Compressor drive error                           | Check cause/replace or repair                                 |
|                                        | Х       | Х       | Dirty filter                                     | Replace/clean                                                 |
|                                        | Х       | Х       | Blower RPM too low                               | Correct                                                       |
|                                        | Х       | х       | Loss of conditioned air due to leaks in ductwork | Repair leaks                                                  |
|                                        |         | Х       | Introduction of excessively hot return air       | Correct                                                       |
|                                        | Х       |         | Introduction of excessively cold return air      | Correct                                                       |
|                                        | Х       | Х       | Low on refrigerant charge                        | Locate leak, repair and recharge by weight (not by superheat) |
| Insufficient capacity                  | Х       | Х       | Restricted thermal expansion valve               | Replace                                                       |
|                                        | Х       | Х       | Zone sensor improperly located                   | Relocate                                                      |
|                                        | Х       | Х       | Unit undersized                                  | Recalculate heat gains/losses                                 |
|                                        | Х       | Х       | Inadequate water flow                            | Increase GPM                                                  |
|                                        | Х       | Х       | Scaling in heat exchanger                        | Clean or replace                                              |
|                                        |         | Х       | Water too hot                                    | Decrease temperature                                          |
|                                        | Х       |         | Water too cold                                   | Increase temperature                                          |
|                                        | Х       | Х       | Filter drier blocked                             | Replace                                                       |
|                                        | X       | Х       | Defective reversing valve                        | Check or replace                                              |
|                                        |         | Х       | Inadequate GPM                                   | Increase water flow to unit                                   |
|                                        |         | X       | Water too hot                                    | Decrease temperature                                          |
| High pressure switch open              | Х       |         | Inadequate air flow                              | Check, clean blower and coil                                  |
| riigii pressure switch open            | Х       |         | Dirty filter                                     | Clean/replace                                                 |
|                                        | X       | Х       | Overcharged with refrigerant                     | Decrease charge                                               |
|                                        | X       | X       | Defective pressure switch                        | Check or replace                                              |
|                                        |         | Х       | Trash in heat exchanger                          | Backflush                                                     |
|                                        |         | Х       | Low water flow                                   | Increase GPM                                                  |
|                                        | Х       | Х       | Overcharge of refrigerant                        | Decrease charge                                               |
| High head pressure                     | Х       | Х       | Non-condensable in system                        | Evacuate and recharge by weight                               |
|                                        | Х       | Х       | Water too hot                                    | Decrease temperature                                          |
|                                        | Х       |         | Dirty filter                                     | Clean/replace                                                 |
|                                        | Х       |         | Inadequate air flow                              | Check, clean blower and coil                                  |

### **Troubleshooting**

| Problem                  | Heating | Cooling | Cause                              | Correction                       |
|--------------------------|---------|---------|------------------------------------|----------------------------------|
| Low suction pressure     | X       | X       | Undercharged                       | Locate leak; repair and recharge |
|                          | X       | Х       | Restricted thermal expansion valve | Repair / replace                 |
|                          |         | Х       | Inadequate air flow                | Check, clean blower and coil     |
|                          |         | Х       | Dirty filter                       | Clean/replace                    |
|                          | Х       |         | Inadequate GPM                     | Increase GPM                     |
| Low pressure switch open | X       |         | Inadequate GPM                     | Increase GPM                     |
|                          | X       |         | Water too cold                     | Increase temperature             |
|                          |         | Х       | Inadequate air flow                | Increase CFM                     |
|                          |         | Х       | Dirty filter                       | Clean/replace                    |
|                          | X       | Х       | Undercharged with refrigerant      | Increase charge                  |
|                          | X       | Х       | Defective pressure switch          | Replace                          |
|                          | X       | Х       | Heat transfer fluid too cold       | Raise water temperature          |

# **Compressor Drive Troubleshooting**

The variable-speed compressor drive includes internal protection functions that limit the compressor operation, or in some cases, disable compressor operation

completely. In an event occurs that causes the compressor operation to shut down, the compressor drive sends a binary signal to the VSPD WSHP UC400 controller and a diagnostic is generated. Refer to Table 48, p. 49 for the correct DIP switch settings for each unit. The DIP switches are located on the interface module located in the compressor drive assembly.

Table 48. DIP switch settings

| Model           | Voltage  | SW1 | SW2 | SW3 | SW4 | SW5 | SW6 |
|-----------------|----------|-----|-----|-----|-----|-----|-----|
| VSVE024/033     | 208/60/1 | OFF | OFF | OFF | OFF | OFF | OFF |
|                 | 230/60/1 | OFF | OFF | OFF | OFF | OFF | OFF |
|                 | 460/60/3 | OFF | OFF | OFF | OFF | OFF | OFF |
| VSVE042/050/060 | 208/60/1 | OFF | OFF | OFF | OFF | OFF | ON  |
|                 | 230/60/1 | OFF | OFF | OFF | OFF | OFF | ON  |
|                 | 460/60/3 | OFF | OFF | OFF | OFF | OFF | ON  |
|                 | 208/60/1 | OFF | OFF | OFF | OFF | OFF | OFF |
| VSHE024/033     | 230/60/1 | OFF | OFF | OFF | OFF | OFF | OFF |
|                 | 460/60/3 | OFF | OFF | OFF | OFF | OFF | OFF |
| VSHE042/050/060 | 208/60/1 | OFF | OFF | OFF | OFF | OFF | ON  |
|                 | 230/60/1 | OFF | OFF | OFF | OFF | OFF | ON  |
|                 | 460/60/3 | OFF | OFF | OFF | OFF | OFF | ON  |



## **Control Wiring**

Figure 24. 208V single-phase wiring

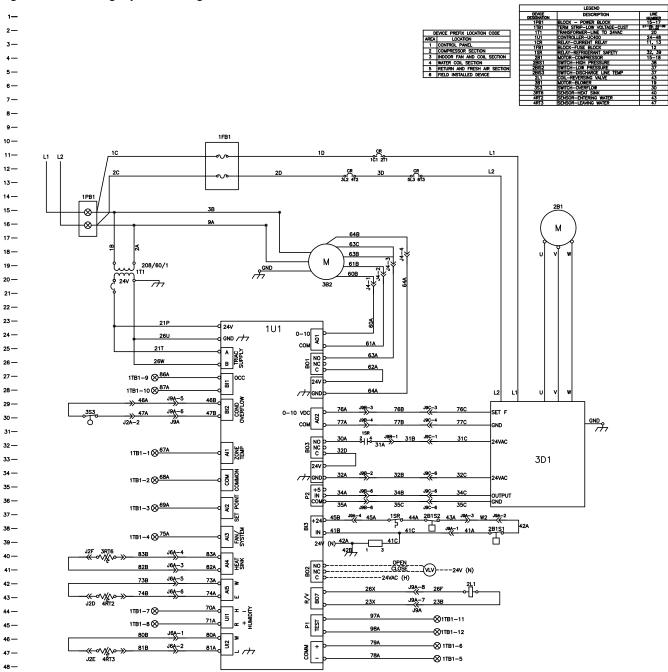
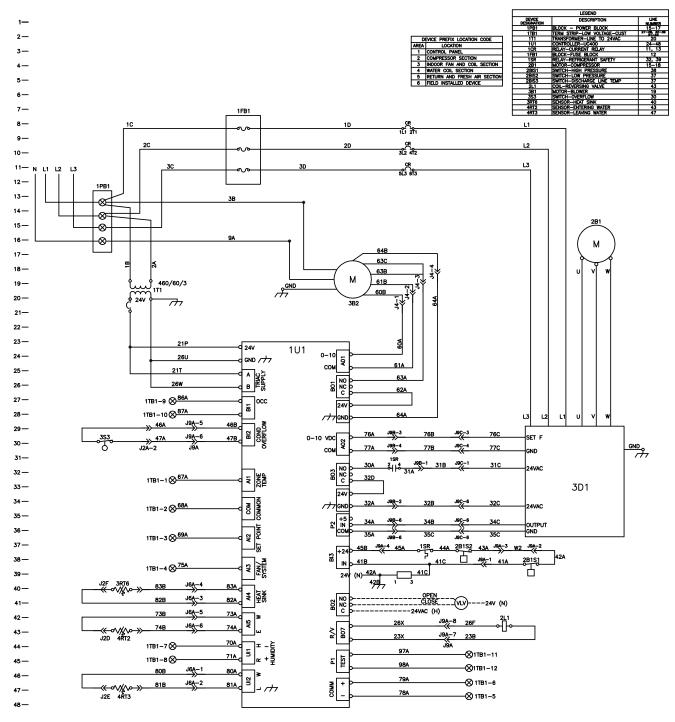




Figure 25. 460V three-phase wiring



#### Notes:

- 1. Unless otherwise noted, all switches are shown at 25°C (77°F), at atmospheric pressure, at 50% relative humidity, with all utilities turned off, and after a normal shutdown has occurred.
- 2. Dashed lines indicate recommended field wiring by others. Field writing to be rated for 600V. Dashed line enclosure and/or dashed device outlines indicate components provided by the field. Solid lines indicate wiring by the Trane company.

  3. Numbers along the right side of the schematic designate the location of the contacts by line number.

  4. All field wiring must be in accordance with the National Electric Code (NEC) and state and local requirements.



Trane optimizes the performance of homes and buildings around the world. A business of Ingersoll Rand, the leader in creating and sustaining safe, comfortable and energy efficient environments, Trane offers a broad portfolio of advanced controls and HVAC systems, comprehensive building services, and parts. For more information, visit www.Trane.com.

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.

